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Abstract 
 
 
Visual attention is used to selectively filter relevant information depending on current task 

demands and goals. This study used real-time functional magnetic resonance imaging (fMRI) for 

online decoding of attention to objects belonging to two different semantic categories. 

Superimposed pictures of a face and place were presented to subjects who had to attend to only 

one of the pictures. Decoding of the semantic category of the attended picture was performed on a 

TR-by-TR basis using a multivariate decoder and its performance was also compared offline to a 

univariate region-of-interest based approach. The multivariate decoder yielded significantly above 

chance-level decoding accuracy whereas the univariate approach failed to perform above chance-

level. Moreover, multivariate decoding was based on sparsely distributed patterns of activity in 

multiple brain regions. This indicates that optimal decoding of object-based attention requires a 

whole brain multivariate decoding approach which can take distribution patterns of cortical 

activity into account. The real-time fMRI system presented in the study not only allows us to probe 

object-based attention in an online setting but may also form the basis of brain-computer interfaces 

that are driven by modulations of high-level cognitive states.  

 

1. Introduction 

 

In our daily life, we are continuously flooded with a multiplicity of stimuli, all competing for our 

attention.  However, only a small amount of information can be assimilated at any given time due 

to limited information-processing capacity (Desimone & Duncan, 1995).  To effectively cope with 

this influx of information, the brain must filter out task-relevant information from the 

environmental stimuli based on current task demands (Rissman & Wagner, 2012). Selective 



attention drives this filtering by focusing processing resources on particular aspects of the 

environment or stimuli, whilst disregarding others. This selective attention can be deployed to a 

certain feature such as color or motion (feature-based attention), to a certain location in space 

(space-based attention) or to an organized chunk of information that corresponds to an object 

(object-based attention) (Serences et al., 2004). Object-based attention uses top-down control to 

enhance the sensory representation of the attended object, resulting in its corresponding features 

being processed more efficiently. Evidence for this top-down control has emerged from numerous 

studies using a variety of measurement techniques. For instance, in a study by Cerf and colleagues 

(Cerf et al., 2010), which employed single-unit recordings, neurons encoding the Marilyn Monroe 

face fired selectively when subjects were presented with a composite picture of Marilyn Monroe 

and Josh Brolin while being asked to attend only to the picture of Marilyn Monroe. Subjects were 

able to robustly regulate the firing rate of their neurons, increasing the rate for the target picture 

(Marilyn Monroe) while simultaneously decreasing the rate for the non-target picture (Josh 

Brolin). The study indicates that despite competing bottom-up sensory inputs, firing rates in medial 

temporal lobe neurons can be voluntarily regulated to reflect object-based selective attention. 

Studies using fMRI, EEG, and MEG have likewise shown that cortical representations for the task-

relevant stimuli can be enhanced while at the same time suppressing the activations for task-

irrelevant stimuli or features (Luck et al., 1993; Eimer, 1996; Hopf et al., 2000; Serences et al., 

2004; Gazzaley et al., 2005; Yi et al., 2006; Rahnev et al., 2011). 

  

Recently, with the introduction of multivoxel pattern analysis (MVPA), new insights have been 

gained in understanding the effect of goal-directed top-down control on cortical representations. 

In one of the first studies that employed MVPA to read subjective contents of the human brain 



using fMRI, Kamitani and Tong (Kamitani & Tong, 2005) argued that if distinct neural patterns 

are associated with different grating orientations then these neural signatures can be used to decode 

attended orientation in two overlapping gratings. The study showed that a classifier, which was 

initially trained to differentiate activation patterns of individual grating orientations, was also able 

to decode the attended grating orientation when any two gratings were simultaneously presented. 

Furthermore, distributed information about the attended orientation was present even in V1, the 

earliest cortical level of visual processing (see also (Li et al., 2004; Haynes & Rees, 2006)). This 

indicates that despite the presence of competing bottom-up sensory inputs, attentional signals 

biased neural patterns in favor of the task-relevant features. Further studies have reported that 

attention-driven top-down control can modulate the cortical representation of a range of different 

stimuli, from simultaneously presented motion fields to simultaneously presented visual objects 

(Reddy & Kanwisher, 2006; Macevoy & Epstein, 2009; Reddy & Tsuchiya, 2010) and even 

conjunction of features such as color and motion (Seymour et al., 2009). See (Rissman & Wagner, 

2012; Tong & Pratte, 2012) for more exhaustive reviews. 

 

In this study, we investigated if the semantic category of an attended stimulus can be decoded non-

invasively and in real-time when stimuli from two different categories are presented 

simultaneously. More specifically, we examined whether a classifier trained on pictures of faces 

and places presented separately, can be used to decode the attended category (face or place) when 

both a face and a place are presented simultaneously in the form of a composite picture. By 

presenting superimposed pictures of a face and a place, we investigated if object-based attention 

can bias the neural patterns towards the attended category and if these differentiating activity 

patterns can be picked up by multivariate pattern analysis in a real-time fMRI setting. Such an 



attention-driven real-time decoding setup could form the basis for a brain-computer interface 

(BCI) for severely paralyzed and locked-in patients. Furthermore, such a system could be used to 

investigate if people can be trained to enhance their attention or prolong their attentional span 

(Jensen et al., 2011). 

Studies have shown that pictures of faces and places invoke spatially distinct and dissociable 

cortical regions, namely, fusiform face area (FFA) for face pictures and parahippocampal place 

area (PPA) for scenes (Puce et al., 1995; Kanwisher et al., 1997; Epstein et al., 1999). More 

recently however, these regions have been shown to have a more overlapping and distributed 

representation than previously thought (Haxby et al., 2001; Ewbank et al., 2005; Hanson & 

Schmidt, 2011; Mur et al., 2012; Weiner & Grill-Spector, 2012). In light of this new view, optimal 

decoding of the attended stimulus from these regions calls for a multivariate decoding approach 

which can detect these overlapping and distributed neural patterns. Thus, a traditional real-time 

fMRI approach, where localizer scans are used to define the regions of interest (ROIs) for deriving 

neurofeedback (deCharms et al., 2004; Caria et al., 2007; Haller, 2010; Zotev et al., 2011; Chapin 

et al., 2012), might be suboptimal in this setting. Therefore, in this study, we used whole-brain 

data to train a classifier to predict the mental state of a subject as this approach does not rely on 

any prior assumptions about functional localization (Laconte et al., 2007; Hollmann et al., 2011; 

Lee et al., 2011; Xi et al., 2011; Anderson et al., 2011; DeBettencourt et al., 2012). Additionally, 

we compared the performance of our multivariate decoding approach with a univariate decoding 

approach that does not take distributed activation patterns into account. Furthermore, because the 

predicted brain state is available on a moment-to-moment basis in real-time fMRI, these online 

detected brain states can be used to train subjects to modulate their ongoing brain activity. Such 

brain-state dependent stimulation provides a new avenue for investigating the neuronal substrate 



of cognition (Hartmann et al., 2011; Jensen et al., 2011). To ascertain how this brain-state 

dependent stimulation will impact subjects’ task performance, we conducted each attention trial 

twice, once with fMRI neurofeedback and once without it. 

2. Methods 

 

2.1. Subjects 

Seven subjects (6 males, 1 female) with an average age of 23.4 (SD = 4.6) years participated in 

the experiment. All participants had normal vision and received either monetary compensation or 

study credits for participating in the experiment. The study was approved by the local ethics 

committee and all subjects gave a written informed consent. To keep them motivated during the 

experiment, participants were promised a monetary reward if their task performance (i.e., average 

decoding accuracy) in the experiment exceeded 95%. 

 
2.2. Stimuli  

The stimulus set consisted of pictures of famous faces and famous places collected from the World 

Wide Web. Previous studies have shown larger activations for familiar faces and places compared 

to unfamiliar faces and places, respectively (Shah et al., 2001; Pierce et al., 2004; Rosenbaum et 

al., 2004). All pictures had a height and width of 450 x 450 pixels with a resolution of 95.987 

pixels/inch, subtending a visual angle of 8°. None of the pictures were corrected for luminosity or 

spatial frequency. 

 

2.3. Experimental protocol 

Before putting subjects in the scanner, they were thoroughly briefed about the experiment to avoid 

any verbal communication during the real-time fMRI run. Participants were shown video 



recordings of all experimental conditions and the task was verbally explained by the experimenter 

with the help of these videos. They were specifically instructed that feedback would be delayed by 

about 4 seconds (pipeline delay) for technical reasons and that no matter what the feedback was, 

they were to always focus their attention on the target picture in the hybrid picture. No instructions 

were given to maintain a specific gaze position. Moreover, subjects were allowed to close their 

eyes during rest periods but were advised to open their eyes a few seconds before this rest period 

was over. 

 

2.4. Experimental design 

The experimental design consisted of two separate sessions. A training phase, where a classifier 

was trained on the cortical activity patterns induced by face and place stimuli, and a test phase, 

where the classifier was used to decode object-based attention to face or place stimuli in real time.  

 

The training phase consisted of fifteen 30 second blocks of face pictures and fifteen 30 second 

blocks of place pictures. These face and place blocks were interleaved with each other, with 12 

second rest intervals in between. In each block, fifteen pictures were presented and the first picture 

was repeated at a random position in the block. Subjects were instructed to press a button on a 

button box with their right index finger when they saw the first picture repeated in that block. This 

kept participants actively engaged in the task throughout the training phase. Each picture within a 

block was presented for 1.5 s followed by a 0.5 s fixation period as shown in Figure 1A. All 14 

pictures in each block were unique and used nowhere else in the experiment. The entire training 

phase took 22 minutes to complete.  

 



In the test phase, subjects were required to attend to either faces or places, presented as 15 hand-

picked hybrid stimuli showing a superimposed face and place image (see supplementary figures 

S1 and S2 and supplementary movie M1). Stimuli were shown once with feedback to the subject 

(feedback condition) and once without it (non-feedback condition). Thirty trials were collected in 

each of the two conditions, where 15 trials had a face picture as the target and the other 15 trials 

had a place picture as target. We used 12 interleaved mini-blocks of feedback and non-feedback 

trials, with each mini-block containing 5 trials. The ordering of mini-blocks was counterbalanced 

across subjects. Every trial in the test phase started with presentation of the target and non-target 

cue pictures for 1.75 s each followed by a 0.5 s fixation. The order of presentation of target and 

non-target picture cues was counterbalanced across subjects. Then the hybrid image was shown 

and the subjects had to attend to the target picture while ignoring the non-target picture. Due to 

pipeline delay, the hybrid image was kept unchanged for the first two scans. Next, for trials in the 

feedback condition, the relative visibility of the face and place pictures in the hybrid image was 

enhanced or decreased by 5% in each TR, depending on the prediction made by the classifier. This 

gave a visual indication to the subjects of their task performance on a TR-by-TR basis (see Figure 

1B). The trials timed out after 28 s (14 TRs).  

  
 
2.5 MRI acquisition parameters 

Experiments were performed at the Donders Institute for Brain, Cognition and Behaviour using a 

Siemens MAGNETOM Tim TRIO 3.0 T scanner with a 32-channel head coil. First, high-

resolution anatomical images were acquired using an MPRAGE sequence (TE/TR = 3.03/2300 

ms; 192 sagittal slices, isotropic voxel size of 1x1x1 mm). Then the real-time fMRI run was 

initiated and functional images were acquired using a single-shot gradient echo planar imaging 



(EPI) sequence (TR/TE = 2000/30 ms; flip angle = 75°; voxel size = 3x3x3.3 mm; distance factor 

= 10%) with prospective acquisition correction (PACE) to minimize the effects of head motion 

during data acquisition (Thesen et al., 2000). Twenty-eight ascending axial slices were acquired, 

oriented at about 30° to the AC-PC (Anterior-Posterior Commissure). 

 

2.6. Real-time data export and preprocessing 

All functional scans collected during the real-time fMRI run were acquired using a modified 

scanner sequence that dumped fMRI acquisition parameters in a text file at the start of each 

functional run. After the functional run was initiated, k-space data of each acquired functional 

image was inverse Fourier transformed and written to the hard-drive of the scanner host computer 

as a raw pixeldata file. As each new pixeldata file corresponding to every functional scan was 

generated, it was read using the protocol information generated earlier when the sequence was 

initiated. Pixeldata files were sent over Ethernet to another computer where the scans were stored 

in a FieldTrip (Oostenveld et al., 2011) raw data buffer.  Each newly buffered raw scan was then 

fed into a MATLAB-based (The Mathworks, Natick, MA) preprocessing pipeline.   

 

The first preprocessing step involved selecting one of the two image series generated by the 

scanner sequence, the PACE series of images which is only prospectively corrected and the MoCo 

(Motion Corrected) series which is both prospectively and retrospectively corrected (Thesen et al., 

2000). We used the MoCo series of images as it had least residual motion in it. Then slice-time 

correction was applied followed by retrospective motion correction using an online rigid-body 

transformation algorithm with six degrees of freedom. This motion correction was carried out to 

remove any residual motion in the MoCo series.  Then a recursive least-squares general linear 



model was applied to each scan to remove nuisance signals (Bagarinao et al., 2003). Five 

regressors, corresponding to DC offset, linear drift and three translational motion parameters, were 

used in the model. A grey matter mask was then applied to each scan to remove white matter and 

cerebral spinal fluid voxels. This mask was obtained from the high-resolution anatomical images 

with SPM8 (Wellcome Department of Cognitive Neurology, Queens Square, London, UK) using 

a unified segmentation-normalization procedure (Ashburner & Friston, 2005) and resliced to the 

resolution of the functional scans using the first acquired functional scan as a reference. After grey-

matter masking, top and bottom slices in each scan were masked out. This is because retrospective 

motion correction always results in data loss at the boundary slices requiring their removal. Each 

scan, now fully preprocessed, was saved in a FieldTrip preprocessed data buffer. The entire real-

time fMRI pipeline is shown in Figure 2. 

 
 
2.7. Feature extraction and classification 

From the preprocessed data buffer, data was sent to another MATLAB script which extracted 

features. First, scans in the training phase were shifted by 6 s to account for the hemodynamic 

delay. Then scans corresponding to 12 s rest periods between every consecutive face and place 

block were dropped. Then all scans within each of the face and place blocks were averaged and 

used to train a classifier. We used logistic regression in conjunction with an elastic net regularizer. 

Elastic net regularization will shrink and select regression coefficients, identifying relevant 

features (voxels) while performing well in the presence of correlated variables, making it a good 

choice for fMRI decoding.  

 



Given a training set  , , where  is the total number of observations, x  is the ith 

observation and y  the corresponding response, the elastic net logistic regression model is fitted by 

maximizing the penalized log likelihood: 

 

α, β max , ∑ y α x β  – log 1 exp α x β  λ       

     
 
where λ is the regularization parameter, α is an offset term, β is a vector of regression coefficients 

and  ∑ 1    is the elastic net regularizer with mixing parameter . 

For this study, the value of  was fixed to 0.99 for a sparse solution. For the regularization 

parameter λ, the whole regularization path was calculated with the maximum number of allowed 

iterations set to 100. The optimal setting of λ was then computed using nested cross-validation on 

75% of the training data. Using a coordinate gradient descent algorithm (Friedman et al., 2010), 

classifier training took only a few minutes to complete, after which the decoding phase was 

initiated. The preprocessed data, along with the trained classifier and all its predictions during the 

actual real-time run, were saved to disk for use in subsequent offline analyses. 

 

During the decoding phase, each scan was classified individually using the trained classifier. An 

important aspect of this study is that scans in the first 6 seconds of each trial (transition period of 

the hemodynamic response) were also classified and used to generate neurofeedback. A study by 

LaConte and colleagues showed that hemodynamic activity in the transition period contains 

reliable information that can be decoded (Laconte et al., 2007). These scans have mostly been 

ignored in real-time fMRI studies as only scans in the stable period are used where the 

hemodynamic response has reached a stable state. Because a timely feedback is a crucial 

prerequisite for operant conditioning (Mulholland et al., 1979), our approach of classifying scans 



in transition period mitigates the effect of hemodynamic inertia thereby making feedback more 

intuitive.  

 

2.8. Neurofeedback generation 

In trials with neurofeedback, the relative contribution of face versus place pictures in the hybrid 

image was dynamically updated at every TR based on classifier output. This dynamically adapted 

stimulus was generated using StimBox, a custom designed  MATLAB-based layer built on top of 

Psychtoolbox (Brainard, 1997), designed specifically for generation of dynamic stimulus content 

for real-time neurofeedback studies. The timing of the stimulus and scheduling of the whole 

experiment was controlled in BrainStream (www.brainstream.nu), a MATLAB-based software 

package for real-time processing of continuous data streams. 

 

2.9. Performance evaluation 

Decoding performance was quantified in terms of accuracy, defined as the percentage of 

successfully predicted trials. A trial was regarded successful if the sum of log probability for target 

pictures (∑ log | ) was greater than the sum of log probability of non-target 

pictures (∑ log | ) for all 12 scans. In this way decoding performance 

for the feedback and non-feedback condition was calculated. Because each condition contained 

trials in which subject had to attend either face (face trails) or place (place trials), performance for 

each of these trial types was calculated separately as well. A one-tailed t-test was then carried out 

to find if the performance was significantly above the 50% chance level. Furthermore, accuracy 

was calculated on a TR-by-TR basis to investigate how it evolved over the course of the 12 TRs. 

 



We also compared the performance of our multivariate approach with a traditional univariate ROI 

based approach. In this method, ROI’s are identified using the training data and then blood-

oxygen-level-dependent (BOLD) activity from these ROIs are used drive the feedback during the 

test phase. To select the face-selective and place-selective ROIs, an SPM univariate analysis was 

performed on the training data. Two regressors, corresponding to the face and place blocks, were 

used in the general linear model. No other regressors were added to the GLM because the data had 

already been preprocessed by the real-time fMRI pipeline. Two contrasts (faces > places and places 

> faces) were then constructed and thresholded at 0.05 (family-wise error corrected). Two seed 

voxels were selected in each of these contrasts using the voxel with the highest t-value in both left 

and right hemispheres. A rectangular area of 5 x 5 voxels in the x-y plane and 3 voxels in the z-

direction was generated around each of the seed voxels. In this way, face and place-selective 

regions were obtained in each of the two hemispheres. Using the data in the test phase, the 

detrended averaged BOLD activity in the face and place selective ROIs was first normalized. Then, 

the time series of face-selective ROI was divided (point-by-point in time) by the time series place-

selective ROIs to yield the category of the attended class. That is, a ratio above one indicated a 

face whereas a ratio below one indicated a place. Decoding accuracy for each subject was then 

calculated by taking the proportion of correctly classified TRs relative to the total number of TRs. 

 

2.10. Pattern analysis 

In order to disentangle which features drove classification performance, an ROI analysis was 

carried out to investigate which brain regions were used by the classifier for training. This also 

allowed us to examine whether a particular region responded more strongly to one or the other 

class. Voxel selection was done using Analyze4D (www.analyze4d.com). ROIs for individual 



subjects were defined using the locations of the non-zero weights of the classifier trained in the 

actual real-time run. These ROI were labeled using a subject-specific automatic anatomic labeling 

(AAL) mask (Tzourio-Mazoyer et al., 2002) by warping the standard AAL mask from Montreal 

Neurological Institute (MNI) space to native space (Alemán-Gómez et al., 2006) using the inverse 

of the spatial transformation matrix obtained from the SPM8 unified segmentation-normalization 

procedure (Ashburner & Friston, 2005). Before averaging the time courses of all voxels in each 

ROI, time courses of all voxels in each of these ROIs were high-pass filtered (0.01 Hz) with a 

discrete-cosine least-squares linear regression using the NIAK toolbox (Bellec et al., 2011). 

Subsequently, percent signal change for each ROI was calculated using the mean of the entire time 

series as the baseline. The same procedure was repeated for all subjects and then the results across 

all ROIs and conditions were averaged together across the group. If the percent signal change was 

greater in the face block of the training session than the place blocks, then the region was 

categorized as a face-selective region. Otherwise, the region was categorized as a place-selective 

region. 

 

Lastly, we also analyzed the classifier weights as a sanity check. The binary logistic regression 

assigned positive weights to face-responsive voxels and negative weights to place-selective voxels. 

For each subject, the classifier weights within each ROI were averaged together and then summed 

together across the ROIs. Regions showing increased percent signal change for face blocks during 

training in the ROI analysis should have been assigned positive weights and negative weights 

should have been assigned to the regions showing increased percent signal for the place blocks in 

the training session. 

 
3. Results 



The aim of this experiment was to investigate if the category of the attended target picture could 

be decoded in real time when a hybrid of the target and non-target picture is presented. 

Furthermore, the impact of real-time fMRI neurofeedback on decoding performance was 

examined. The results (see Figure 3A) show that the average accuracy for the feedback and non-

feedback conditions was 79% (SD = 11.0%) and 78% (SD = 11.6%) respectively, which is 

significantly above chance level (p < 0.002). Face trials in feedback and non-feedback conditions 

were decoded with accuracies of 87% (SD = 15.6%) and 84% (SD = 14.3%) respectively 

(significant at p < 0.002). Similarly, place trials in feedback and non-feedback conditions were 

decoded with accuracies of 70% (SD = 16.7%) and 71% (SD = 15.3%) respectively (significant at 

p < 0.05). Paired samples t-tests failed to reveal any statistically significant difference between 

feedback and non-feedback conditions and trials. Figure 3B shows the results for the univariate 

ROI-based approach.  Feedback and non-feedback conditions were decoded with an average 

accuracy of 52% (SD= 2.1%) and 52.1% (SD= 7.1%) respectively none of which was significantly 

above chance level (p < 0.05). 

We expected that decoding performance would follow the hemodynamic response, increasing for 

scans in the transition period and levelling off in the stable period. By analyzing the decoding 

performance as a function of TR (see Figure 3C), one may observe that accuracy increased in the 

first six seconds of hemodynamic activity (TRs 1-3), and then leveled off in the following eighteen 

seconds of hemodynamic activity (TRs 4-12). Above chance-level decoding performance was 

achieved for all TRs after the transition period and even for some TRs within the transition period, 

indicating that the transition period does contain reliable information that can be decoded and used 

for feedback. At the level of individual TRs, significantly more TRs were classified as a face than 

place. A paired samples t-test shows a statistically significant difference (t (6) = 2.898, p = .027, α 



= .05) between scans classified as face (M = 412.71, SD = 48.124) and place (M = 307.29, SD = 

48.124). 

The region-of-interest analysis on the classifier weights indicated that the classification algorithm 

selected 31 distinct brain regions across the group (see supplementary Figure S3 for a list of all 

these regions). Regions not activated in more than two subjects were excluded from further 

analysis. This left only nine brain regions as shown in Figures 4A and C. These included bilateral 

fusiform and lingual gyri, right parahippocampal gyrus, left and right inferior occipital lobes, and 

right middle and superior temporal lobes. Right fusiform gyrus, left and right inferior occipital 

lobes, and right middle and superior temporal lobes responded strongly to faces and, hence, were 

labeled as face-selective regions. Left fusiform gyrus, bilateral lingual gyri and right 

parahippocampal gyrus were more responsive to place stimuli and labeled as place-selective 

regions. The details of the results of the ROI analysis can be found in Figures 5A and B. 

We anticipated that classifier weights would be positive for face-selective areas and negative for 

place-selective areas. The classifier weight analysis confirms that this was the case.  Face-selective 

areas such as the right fusiform gyrus, left and right inferior occipital lobes, and right middle and 

superior temporal lobes were all assigned positive weights. Place-selective areas such as the left 

fusiform gyrus, bilateral lingual gyri and right parahippocampal gurus were all assigned negative 

weights. The classifier weights averaged across all subjects for all the brain regions are shown in 

Figure 4B. 

To visually confirm that the experimental manipulation was having the desired effect, time courses 

of voxels selected by the classifier were analyzed. Figure 4E shows the time courses for two such 

voxels, one in the face-selective region in right superior temporal gyrus (MNI coordinates 46, -44, 



14) and the other in the place-selective region of left fusiform gyrus (MNI coordinates -32, -68, -

11). The anatomical labels for these two voxels were derived from the nearest grey-matter region 

reported by the Talaraich daemon (Lancaster et al., 2000). The figure confirms that the voxel in 

the face-selective region is responding more strongly to face conditions and the voxel in the place-

selective region is responding more strongly to place conditions. 

4. Discussion 
 

We studied whether object-based attention can be decoded in a real-time fMRI setting when two 

competing objects are presented simultaneously. Results show that the attended stimulus could be 

decoded in real-time with a significant accuracy of 78.5%. We observed that classification was 

biased towards faces as significantly more scans were classified as a face than as a place. Although 

we scrutinized saliency maps of the 50/50 hybrid image to ensure that none of the two pictures in 

each pair was more salient than the other, differences in salience cannot be completely ruled out 

and hence the observed bias towards one category. Another possible reason for the observed bias 

could be that faces are just easier to focus on due to our innate predispositions and the extensive 

experience with faces (Greenough & Black, 1992; Nelson, 2003). 

 

We expected that above-chance accuracies would be obtained for scans in the transition period 

and our analysis confirms this. This supports the finding of LaConte et al., where an offline 

analysis showed that the transition period of the hemodynamic response contains reliable 

information that can be decoded with above-chance accuracy (LaConte et al., 2007). We have 

therefore shown that predictions using scans in the transition period can be used online to reduce 

real-time fMRI neurofeedback delay by as much as six seconds.  



Our multivariate decoding approach was also compared with a traditional univariate approach. 

Whereas the multivariate approach achieved a very high decoding performance of 78.5%, the 

univariate approach failed to reveal any significant decoding performance. This suggests that face 

and place representations are expressed in terms of distributed patterns of brain activity, requiring 

a multivariate decoding approach. This finding is corroborated by the fact that the classifier used 

multiple voxels distributed across various brain regions for decoding (please see supplementary 

Figure S4).  

We investigated if fMRI neurofeedback of scan-by-scan brain state classification outcome can 

improve task performance. Neurofeedback did not significantly influence decoding performance. 

This is in contrast to our expectation that neurofeedback will help drive attention towards the target 

category, thereby resulting in higher decoding accuracies for trials with feedback compared to 

trials without feedback. A possible explanation for this might be that feedback and non-feedback 

trials were conducted in interleaved mini-blocks. This interleaving might have diminished any 

learning effects, as subjects would not have been able to discover any consistent strategy due to 

frequent switching between the feedback and non-feedback trials. In future studies, rather than 

using a within-subject design for feedback and non-feedback conditions, a between-subject design 

should be used. Moreover, the duration of feedback was chosen to be 12 TRs (24 seconds) as a 

compromise between the number of trials and the experiment duration. This might have been too 

short for any significant reinforcement learning. Previous real-time studies have used trial 

durations ranging from 15 s to 60 s conducted over the course of multiple days (see (Weiskopf et 

al., 2004) for a review). Finally, the feedback was updated every TR which might have resulted in 

cognitive overload, thereby resulting in suboptimal learning in the feedback condition. Future 

studies should investigate the use of slower feedback update rates. 



 

Our analysis revealed nine regions that were consistently used by the classifier to derive the 

predictions. Among these regions is the left fusiform gyrus which is usually associated with 

reading and word processing (McCandliss et al., 2003; Hillis et al., 2005; Dehaene & Cohen, 

2011). However, this area has also been suggested to be sensitive to the conjunction of object and 

background scene information (Goh et al., 2004). This view is strengthened by invasive studies in 

primates that also pointed to the presence of neurons in this area which are responsive to the 

conjunction of object features (Baker et al., 2002; Brincat & Connor, 2004). Left fusiform gyrus 

may be showing more activity for place blocks than for face blocks since pictures of famous places 

in the stimulus set contained not only objects but also a wide variety of backgrounds. Pictures used 

in the face blocks rarely had objects in them. Only a few face pictures had necklaces, earrings, 

glasses, et cetera. Right fusiform gyrus showed a preference for face blocks whereas the left 

parahippocampal gyrus showed a preference for place blocks. These two regions have been 

implicated in many studies to be responsible for the processing of faces and place, respectively 

(Aguirre et al., 1996, 1998; Kanwisher et al., 1997; McCarthy et al., 1997; Epstein & Kanwisher, 

1998).  

 

Two other regions selected by the classifier are the right medial temporal lobe and the right 

superior temporal lobe. Their involvement could be related to activity modulations induced by 

famous as opposed to non-famous stimuli. A study by Tempini and colleagues (Gorno-Tempini & 

Price, 2001) showed an effect of fame in anterior medial temporal gyrus (aMTG) that is common 

to faces and buildings, though this was stronger in right than in left aMTG. In our study the right 

temporal gyrus shows a preference for faces but not for places. This could be because many of the 



supposedly famous landmarks used in the stimulus set were not as familiar to the subjects as 

expected. Most participants reported that although they could recognize many of the famous faces, 

they could not identify many of the pictures of the famous places. This asymmetry could drive 

classifier responses that dissociate between faces and places. 

 

Finally, both left and right inferior occipital gyri were activated in the experiment, showing more 

activation for the face blocks. These regions contain the occipital face area (OFA). The OFA is 

spatially adjacent to the FFA and preferentially represents parts of the face, such as eyes, nose, and 

mouth (Liu et al., 2002; Pitcher et al., 2007, 2008). OFA is an essential component of the cortical 

face perception network and it represents face parts prior to subsequent processing of more 

complex facial aspects in higher face-selective cortical regions. 

 

Concluding, we have shown that real-time fMRI allows for online prediction of attention to objects 

belonging to different semantic categories. Prediction is based on distributed patterns of activity 

in multiple brain regions. The outlined developments not only allow us to probe object-based 

attention in an online setting but may also form the basis of brain-computer interfaces that are 

driven by modulations of high-level cognitive states.  
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Figures 

 

 
Figure 1. Experimental design. (A) Face, place and rest blocks in the training session. The first 
picture in each block was repeated at a random position in the block and subjects were required to 
press a button when they detected this repetition. (B) Example of a trial in a feedback and non-
feedback block during the test session. In feedback trials, the hybrid image was continuously 
updated. However, in the first 2 TRs highlighted in yellow, the hybrid picture remains at 50/50 
contrast due to pipeline delay. In non-feedback trials, the hybrid remained at 50/50 contrast at all 
times. 
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Figure 2. Donders real-time fMRI pipeline. See main text for details. 
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Figure 3. (A) Multivariate decoding performance for feedback and non-feedback conditions and 
different trial types within each of these conditions. The error bars represent standard error of the 
mean. (B) Univariate decoding performance for feedback and non-feedback conditions.  The error 
bars represent standard error of the mean. (C) Decoding performance as a function of TR. The 
open circles show that the decoding performance was found to be statistically insignificant at that 
point whereas the filled circles shows that the decoding performance was found to be statistically 
significant (p < 0.05). The inset shows the relative number of TRs classified as face or place across 
the group. The dashed line represents the ideal unbiased distribution of face and place TRs.  
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Figure 4. (A) Nine anatomical regions used by the classifier during training. These nine regions 
were activated in three or more subjects. (B) Classifier weight for all nine regions. Positive weights 
are assigned to the face-selective regions and negative to the place-selective regions. The error 
bars represent standard error of the mean. (C) An anatomical view of the nine regions mask 
overlaid on the MNI152 template. (D) Sparsely distributed classifier weights across the group 
overlaid on the MNI152 template.  (E) The top plot shows the time course of one face-selective 
voxel in right superior temporal cortex (MNI coordinates 46, -44, 14 and highlighted in white) as 
selected by the classifier during training. The bottom plot shows the time course of one place-
selective voxel in left fusiform gyrus (MNI coordinates -32, -68, -11 and highlighted in white) as 
selected by the classifier during training.  
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Figure 5. ROI analysis results for all nine regions activated across the group. A region was 
regarded as face-selective if the percent signal change in face blocks was greater than the percent 
signal change in place blocks during training. The opposite criterion was applied for place-
selective regions. (A) ROI analysis for all place-selective regions. (B) ROI analysis for all face-
selective regions. The error bars indicate standard error of the mean. 
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