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Abstract

mRNA caps are 5-terminal modifications that happen co-transcriptionally on Pol-II
transcribed transcripts in eukaryotes. These caps can be of different types depending
on the modifications present on the first and second transcribed nucleotides of the
mRNA. Together with poly(A) tails — a homopolymer stretch of adenosines — at
the 3’-end of the mRNA, the caps help the mRNA form into a pseudo circular loop
that recruits ribosomes in the cytosol for translating the message encoded in the
messenger RNA into protein. Both the poly(A) tail length and cap type can therefore
have important consequences in the expression of a transcript, and understanding
this interaction is important in understanding the complex world of RNA biology.

Currently, there exists no method that can study these two distant ends of the
mRNA simultaneously in the same assay. Most of the methods for cap structure
determination are bulk methods that rely on severing the cap from their respective
transcripts and then finding their relative abundance in the sample. Once the
caps are cleaved off from their respective transcripts, it is impossible to attribute
the quantified caps to their respective transcripts. Thus existing cap methods
cannot provide transcript isoform-level or even gene-level information about the cap
structures in a transcriptome-wide manner. Similarly, most of the existing poly(A)
tail profiling methods can only sequence a small portion of the transcript proximal
to the measured poly(A) tail. This small sequenced transcript fragment may not
have sufficient discriminative power to distinguish between transcript isoforms that
share the same 3’ polyadenylation site but have different 5’ compositions. Thus an

estimated poly(A) tail could not be unambiguously assigned to a particular isoform.

In such cases, only gene-level poly(A) tail length assessment can be done.

We have developed a Nanopore sequencing-based method to sequence a native RNA
molecule end-to-end. In doing so, we can study both the poly(A) tail and RNA caps
— and possibly other RNA modifications in the future — simultaneously in a single
assay with single-molecule resolution. The capable frame I have developed uses a
machine learning model trained on Nanopore current-based features of different
caps to predict the cap structures on individual RNA molecules. On the very same
reads, the tailfindr framework that I developed can be used to estimate the poly(A)
tail lengths. Together, these two tools enable us to simultaneously study the caps
and the poly(A) tails transcriptome-wide — one long molecule at a time.

xi



Abstract (Norwegian)

mRNA caps er 5’-terminale modifikasjoner som skjer co-transkripsjonelt pa Pol-II
transkriberte transkripsjoner i eukaryoter. Disse hettene kan vare av forskjellige
typer avhengig av modifikasjonene som er tilstede pé de forste og andre transkriberte
nukleotidene til mRNA. Sammen med poly(A) haler — en homopolymer strekning
av adenosiner — i 3’-enden av mRNA, hjelper kappene mRNA til & danne seg til
en pseudo sirkuler lgkke som rekrutterer ribosomer i cytosolen for & oversette
meldingen kodet i messenger RNA til protein. Bade poly(A) halelengde og cap type
kan derfor ha viktige konsekvenser i uttrykket av et transkripsjon, og forstdelsen av
denne interaksjonen er viktig for & forstd den komplekse verden av RNA-biologi.

For tiden eksisterer det ingen metode som kan studere disse to fijerne endene av
mRNA samtidig i samme analyse. De fleste metodene for bestemmelse av cap-
struktur er bulkmetoder som er avhengige av a skille hetten fra sine respektive
transkripsjoner og deretter finne deres relative overflod i proven. Nar hettene forst
er klippet av fra deres respektive transkripsjoner, er det umulig & tilskrive de kvan-
tifiserte hettene til deres respektive transkripsjoner. Dermed kan ikke eksisterende
cap-metoder gi transkripsjonsisoform-niva eller til og med gen-nivé informasjon om
cap-strukturene pé en transskriptomomfattende mate. Tilsvarende kan de fleste av
de eksisterende poly(A)-haleprofileringsmetodene bare sekvensere en liten del av
transkripsjonen proksimalt til den mélte poly(A) halen. Dette lille sekvenserte tran-
skripsjonsfragmentet har kanskje ikke tilstrekkelig diskriminerende kraft til & skille
mellom transkriptisoformer som deler det samme 3’-polyadenyleringssetet, men
har forskjellig 5’-sammensetninger. Dermed kunne ikke en estimert poly(A)-hale
utvetydig tilordnes en bestemt isoform. I slike tilfeller kan kun poly(A) halelengde-
vurdering pa genniva gjgres.

Vi har utviklet en Nanopore-sekvenseringsbasert metode for 8 sekvensere et naturlig
RNA-molekyl ende-til-ende. Ved & gjgre det kan vi studere bdde poly(A)-hale og
RNA-hettene — og muligens andre RNA-modifikasjoner i fremtiden — samtidig
i en enkelt analyse med enkeltmolekylopplgsning. Den capable rammen jeg har
utviklet bruker en maskinleringsmodell trent pd Nanopore-strgmbaserte funksjoner
til forskjellige caps for & forutsi cap-strukturene pd individuelle RNA-molekyler.
Pa samme mate kan tailfindr-rammeverket som jeg utviklet, brukes til & estimere
poly(A)-halelengdene. Sammen gjgr disse to verktgyene oss i stand til & studere
hettene og poly(A)-halene i hele transkriptomet samtidig — ett langt molekyl om
gangen
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Introduction

Ribonucleic Acid or RNA is a central component of all life. In eukaryotes, RNA
polymerase II (pol II) transcribes DNA in the cell’s nucleus to nascent messenger
RNA (or pre-mRNA).

When the transcribed pre-mRNA is 20-30nt long, a series of enzymatic reactions
add a methylated guanosine (m’G) to the 5-end of the nascent RNA with a 5’-5’
triphosphate bridge. The terminal inverted m”G base is called cap0 (also represented
by the notation m’GpppNp-RNA, where N is the first transcribed nucleotide of
the pre-mRNA). A capO prevents the degradation of the growing RNA strand by
exonucleases and helps recruit the translation initiation factors for RNA translation[1,
2].

CapO-capped transcripts can be used as substrates by cap methyltransferase 1
(CMTR1) enzyme that imparts a methyl group on the ribose sugar backbone of
the first transcribed nucleotide to form a capl structure (m’GpppNmp-RNA). A capl
acts as a maker that a cell uses to distinguish its RNA from viral RNA as viral RNAs
typically lack capl structure [3].

On some of the capl transcripts, an additional enzyme, cap methyltransferase 2
(CMTR2), can methylate the ribose sugar of the second transcribed nucleotide
resulting in a cap2 structure (m’GpppNmpNmp-RNA) [4]. As much as half of the
poly(A)-tailed RNA in humans have a cap2 cap [5]. Recently, it has been found that
methylation of second transcribed nucleotide in cap2 impacts protein production
level in a cell-specific manner and contributes to RNA immune evasion [6].

Recently, more cap structures have come to light in both eukaryotes and prokaryotes.
The new caps include cap0-m®A (m’Gpppm®Ap-RNA), capl-m®Am (m’Gpppm®Amp-
RNA), and caps that contain metabolic cofactors such as nicotinamide adenine
dinucleotide (NAD), flavin adenine dinucleotide (FAD), uridine diphosphate glucose
(UDP-Glc), and uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) [Bird2018-sr,
7, 81. All these different cap structures constitute an additional layer of epitranscrip-
tomic complexity that may have a crucial role in determining the fate of the RNA in
health and disease.
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When the transcription of a capped pre-mRNA is close to completion, it undergoes
polyadenylation in which a poly(A) polymerase adds a long stretch of adenosines —
or a poly(A) tail — to the 3-end [9]. The newly-formed poly(A) tails have a tightly
constrained species-specific length which ensures that the poly(A)-binding proteins
(PAB) can bind efficiently to the mRNA and export it out of the nucleus and into
the cytoplasm [10]. In the cytoplasm, the poly(A) tails may shorten [11], and the
two ends of the mRNAs form a pseudo-circular loop [12, 13]. Finally, ribosomes get
recruited to these loops and start translating the mRNAs into proteins [14].

The interaction between different 5’-cap types and different length 3’ poly(A) tails
may have significant consequences for the fate of mRNA and gene expression.
However, methods for studying these two opposite ends of the mRNA simultaneously
at a transcriptome-wide single-molecule level have been non-existent — until now.
This thesis is a small step in developing tools that allow us, for the very first time,
to study RNA caps and poly(A)-tails — and possibly more RNA modifications in
the future — simultaneously at a single-molecule level. The tools developed will
be instrumental in understanding the complex world of RNA — one molecule at a
time.

Current state-of-the-art and aims of this thesis

Existing methods for determining cap structures on mRNA transcripts require sev-
ering off the cap from their respective transcripts and then using either gel- or
mass-spectrometry-based methods to separate and identify the different cap types.
These bulk methods lack transcript-level specificity — or even gene-level specificity,
for that matter — and can, at the most, only give a relative abundance estimate
of different cap structures present in an RNA sample. The lack of methods for cap
structure prediction at single-molecule resolution represents a significant bottleneck
in understanding the transcriptome-wide role of different cap structures. A single-
molecule cap prediction method can shed light on the factors that influence the
presence of one or the other cap type on a transcript and inform about the role that
these different caps play in the fate of their respective transcripts. Thus, our first
research goal is:

R1: To develop a method that can predict the cap structure present on an individual
RNA transcript molecule

Chapter 1 Introduction
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The 5-caps interact with the 3’-poly(A) tails in the cytoplasm. Many methods exist
for estimating the poly(A)-tail length. However, we cannot study poly(A)-tails at a
transcript isoform resolution because current methods rely on Illumina sequencing
that sequences only a tiny part of the transcript proximal to the measured poly(A).
The small transcript fragment does not have sufficient discriminatory power to help
us unambiguously assign the measured poly(A) tail length to a particular isoform
when the poly(A) cleavage site is identical for the different isoforms. As a result,
in such cases we can only attribute the measured poly(A) tail to a gene, but not
to any of its isoforms. However, the poly(A) tails of different transcript isoforms
of a gene might have gone through varying levels of poly(A) tail length regulation.
Thus, collapsing the poly(A) tail lengths of different transcript isoforms across a
gene — as all existing methods do — may produce a blurry and misleading picture
of the poly(A)-tail dynamics. Therefore, there is a need for a technique that can shed
light on transcript isoform-specific differences in poly(A) tail lengths. Therefore, our
second research goal is:

R2: To develop a method that can estimate poly(A) tail length of individual RNA
transcript molecules

As both the 5’-cap and 3’-poly(A) tail interact during translation to form a closed-loop
structure, therefore, the particular cap structure present on the RNA and length of
the poly(A) tail length may have some critical consequences. To date, it has been
impossible to assess transcriptome-wide interactions between poly(A) tail and RNA
caps, primarily because none of the existing methods can probe the cap structures
and poly(A) tail lengths simultaneously for individual RNA molecules. I aim to
develop the cap structure prediction and poly(A)-tail profiling methods in such a
way that we can study both of them simultaneously for every RNA molecule.

Methodology in brief

Our method for simultaneous probing of cap structure and poly(A)-tail length in
mRNA molecules relies on Nanopore sequencing. This nascent technology enables
us, for the very first time, to sequence Native RNA, i.e., sequencing RNA directly
without reverse transcribing it to ¢cDNA first. Competing short- and long-read
sequencing methods from Illumina and Pacific Biosciences, respectively, cannot

1.2 Methodology in brief
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sequence native RNA and require it to be converted into cDNA first, which flushes
away base modification information on the RNA.

In Nanopore sequencing, the RNA is fed through a protein nanopore suspended in a
membrane that separates two ionic buffer-filled wells. A voltage applied across the
membrane sends a current through the pore which is disrupted by a translocating
RNA strand. Any modifications on RNA, including poly(A) tails and cap methylations,
result in a distinct signature in the pore current, which can, theoretically, be decoded
to predict the type of modification.

We have found that methylated cap bases have a different current signature and
dwell longer in the pore than unmethylated bases. Furthermore, 2’-O methylations
on the first and second transcribed nucleotides also increase the dwell time of
11%™ and 12™ transcribed nucleotides, respectively. A classifier trained on these
cap-specific signatures from all possible cap permutations can be used to probe the
methylation status, and hence the cap structure, of an individual RNA transcript.
Additionally, when the poly(A) tail of a capped-transcript passes through the pore,
it results in a monotonic current signal due to the lack of sequence diversity in the
poly(A) tail. The time duration of this monotonous stretch of current encodes the
length of the poly(A) tail, which can then be used to estimate the poly(A) tail length
in nucleotide units. In this way, our methods can simultaneously probe both the
cap structure and poly(A) tail length at single-molecule resolution using Nanopore
sequencing of mRNA.

Significance of this work

To say that the world of RNA is complicated is an understatement: In addition to caps
and poly(A) tails, RNAs have alternative polyadenylation sites, regulatory sequences
in the UTRs, alternative splice sites, and around 170 different modifications, to
name just a few. We can unravel the myriad ways these various components of RNA
interact in the biology of health and disease only if these components are studied in
tandem — and not in isolation. Developing tools for studying RNA cap structure
and poly(A) tails simultaneously is a small step in that direction. With nanopores
enabling sequencing of anything from DNA [15] to RNA [16] and from proteins
[17] to metabolites [18, 19], we will soon be able to shed unprecedented light on
the complex inner workings of the RNA — and the tools developed in this thesis are
a stepping-stone towards this end.

Chapter 1 Introduction



1.4 Thesis structure

Chapter 2 gives a detailed background on Illumina sequencing and motivates the
use of Nanopore sequencing by highlighting some of the critical shortcomings of
Mlumina sequencing. Next, I explain the inner workings of Nanopore sequencing, its
data format, and some of the key steps in processing this data.

Chapter 3 deals with our first research goal (R1) of developing a method for predict-
ing cap structure at a single-molecule resolution using Nanopore sequencing. I first
explain the different cap structures and some techniques for cap detection and list
their shortcomings that make Nanopore sequencing an ideal candidate for the task.
Next, I discuss some of the challenges involved in sequencing RNA caps through
Nanopore and how I have attempted to solve these challenges in the method —
capable — that I developed.

Chapter 4 deals with my second research goal (R2) of developing a method for
poly(A)-tail length prediction at a single-molecule level using Nanopore sequencing.
First, I motivate our approach by explaining some of the shortcomings of Illumina-
and PacBio-based methods for poly(A)-tail profiling and how I bridge these gaps
with the Nanopore sequencing-based method - tailfindr. The details on how tailfindr
profiles poly(A) tails in RNA and unamplified DNA with Nanopore sequencing are
then explained in the appended peer-reviewed paper. After this paper, I discuss
my subsequent work for poly(A)-tail profiling on amplified cDNA using Nanopore
sequencing.

Lastly, chapter 5 summarizes the contributions made in this thesis and discusses the
future directions of this research.

1.4 Thesis structure
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2.2

Background

Sequencing

Sequencing determines the order of the chemical building blocks that make up an
RNA, DNA, or a peptide [16, 15, 17, 20]. In DNA and RNA, these building blocks
are called bases or nucleotides, whereas in peptides they are called amino acids.

DNA and RNA have four possible canonical bases: adenosine(A), guanine(G), cyto-
sine(C), and the fourth base is thymine(T) in DNA and uracil(U) in RNA.

The sequence content of DNA and RNA encodes important genetic and regulatory
information. For instance, DNA sequencing can tell us which genes are present in
the genome, and RNA sequencing can tell us which genes are expressed, i.e., turned
ON or OFF, and how much they are expressed.

Two of the most prevalent sequencing technologies today are short-read and long-
read sequencing. Below, I will discuss these two methods and their relative strengths
and weaknesses.

Short-read sequencing of RNA

Short-read sequencing, as the name indicates, can sequence only short fragments
(50-300 nt) of DNA. Illumina sequencing is one of the most widely used short-read
sequencing technologies.

Briefly, in Illumina sequencing, the RNA to be sequenced is first sheared into small
fragments that are then used to synthesize complementary DNA (cDNA). Sequencing
adaptors attached to the ends of the size-selected cDNA fragments subsequently
hybridize to the complementary oligos present on the Illumina flowcell. Bridge
amplification amplifies each original fragment into a cluster of spatially-close copies.
Sequencing begins by first hybridizing a sequencing primer to each strand in a cluster.
Next, fluorescently-tagged nucleotides are added. In each cycle of sequencing, only
one of these nucleotides is incorporated in the growing strands of the cluster. As
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this happens, a fluorescence signal is emitted which gives away the identity of the
incorporated nucleotide and hence the sequence of the original fragment of interest
(which is complementary to the incorporated nucleotide). If we want the length of
the final reads to be 100 nt, then 100 cycles of fluorescent nucleotide incorporation
are performed in the [llumina sequencer.

Shortcomings of Illumina sequencing
Sequencing of Native RNA is not possible

[llumina sequencing depends on clonal amplification of the fragment-of-interest to
form a cluster. The formation of a cluster is crucial for the emission of a strong-
enough fluorescence signal during each sequencing cycle. If the fragment-of-interest
is not amplified, only one fluorescently-tagged nucleotide will be incorporated in
each sequencing cycle and its fluorescent signal intensity will be too weak to be
detected by the sequencer optics.

Clonal amplification can only be performed if the fragments are DNA and not
RNA because currently, there is no viable method for clonal amplification of RNA.
Furthermore, RNA is highly unstable. Even if someone invented a method for clonal
amplification of RNA, the resulting RNA clusters would severely degrade with each
new sequencing cycle as each cycle includes many chemical steps.

lllumina sequencing cannot detect RNA modifications directly

As Illumina sequencing requires the conversion of RNA into cDNA before sequencing,
any modifications present on the RNA are lost in this conversion. Hence Illumina-
based methods cannot directly read RNA modifications.

Elaborate ways around this limitation thus need to be devised for each individual
modification that one wants to detect in the original RNA. For instance, to detect
m6A modification, the m6A-seq protocol uses an m®A-specific antibody to fish out
fragments containing an m®A-modified base [21]. On a similar note, to detect
internal 2-O’ methylations in RNA, the Nm-seq protocol [22] fragments the RNA and
then repeatedly applies oxidation-elimination-dephosphorylation (OED) reaction
which removes one base at a time from the 3’-end of RNA fragment in each cycle
until a 2’-O methylated base is encountered. Thus all the RNA fragments left after
multiple OED cycles have a 2’-O methylated base at the 3’-end. cDNA conversion
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and sequencing follows. After aligning the reads to the reference, the 3’-ends of the
mapped read clusters inform about internal 2’-O methylation sites.

There are approximately 170 known RNA modifications [23]. Devising bespoke
workarounds to indirectly detect each of these modifications using Illumina sequenc-
ing is intractable.

The necessity of using PCR introduces biases in the sequenced output

Mlumina sequencing relies on PCR for clonal amplification to create clusters. PCR
is known to have a sequence bias. GC-repeat-rich regions get compressed, and
homopolymer stretches cause the polymerase to stutter, resulting in amplified copies
with fewer homopolymer bases than in the original fragment [24]. The PCR errors
in the homopolymer stretches can cause incorrect estimates of the poly(A) tail
lengths. Furthermore, PCR biases can also lead to inaccurate transcript abundance
estimates.

Transcript isoform-level inferences are difficult to make

Short-read sequencing produces short-read fragments that are then aligned to the
reference genome or transcriptome like a jigsaw puzzle to find the gene or isoform
from which these pieces originated. In such an approach, it is often difficult to make
isoform-level inferences because the individual pieces might not cover regions that
distinguish between different isoforms. For instance, it may not be possible to assess
if there are any isoform-specific differences in poly(A)-tail length in RNA when
the isoforms have the same alternative polyadenylation site. As you will see later
in chapter 4, this is because Illumina protocols for poly(A)-tail profiling can only
sequence a fragment of RNA proximal to the poly(A) tail. These poly(A)-proximal
short transcript fragments might be the same across distinct isoforms thereby limiting
us from making any isoform-specific inferences about the poly(A) tail length.

The short length of lllumina reads is severely limiting

In lumina sequencing, the read length is limited to 300 nt. This is because in
every new cycle of Illumina sequencing, a new fluorescently-tagged nucleotide is
incorporated in each growing strand of a cluster. However, in some cycles, a new
nucleotide may not incorporate in one (or more) of the strands of the cluster, which
causes these strands to lag behind the other strands — a so-called phasing error

2.2 Short-read sequencing of RNA
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[25]. Over many cycles, more and more of the strands lag behind, and the phasing
error grows. This causes the fluorescent signal of the cluster to dilute progressively
with each new cycle. Above 300 cycles, the cluster’s fluorescent signal becomes
so heterogeneous that the associated optics and electronics cannot determine the
incorporated base in the cluster in a given cycle. That is why it is futile to perform
more than 300 cycles of sequencing in Illumina.

Even with 300 nt read length, during QC, low-quality bases at the end of the reads
are usually trimmed off leaving behind fragments that are shorter than 300-nt long
reads we started with [26].

With such short read lengths, it is difficult to resolve complex regions in the genome,
or study the two ends of transcripts simultaneously in a single read because such
short reads cannot span the majority of transcripts end-to-end. For example, it is
impossible to study poly(A) tail length in individual RNA isoforms in conjunction
with the cap type on that isoform with [llumina sequencing.

Long-read sequencing of RNA

Long-read sequencing allows us to sequence full-length reads end-to-end. The
size of the reads is limited only by the size of the RNA molecules one starts with
during library prep. Oxford Nanopore Technologies (ONT) and Pacific Biosciences
(PacBio) are at the forefront of this new sequencing paradigm. PacBio sequencing,
like Tllumina sequencing, cannot sequence RNA directly. Therefore, this thesis will
focus on Nanopore sequencing only, which can sequence RNA [16], DNA [15], and
— more recently — proteins as well [17]. In this thesis, Nanopore (with capital N)
refers to the nanopore sequencing method developed by ONT.

In Nanopore sequencing, a protein pore is suspended in a membrane separating
two ionic buffer-filled wells (see Fig. 2.1) [27]. A potential difference of approx.
—-180mV is applied across the membrane which causes a constant ionic current to
flow through the pore. If an RNA molecule passes through the pore, it disrupts
the otherwise constant current flowing through the pore; the larger the size of this
molecule, the more the blockage in the pore current. In this way, any molecule
passing through the pore creates characteristic modulations in the pore current that
can help us decode that molecule’s identity.

Chapter 2 Background



Fig. 2.1.
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Nanopore sequencing of a native RNA molecule. An engineered protein pore is suspended
in a membrane which separates buffer-filled wells on cis and trans sides of a membrane.
Across the membrane a voltage is applied. The translocation of the RNA in the DNA-RNA
heteroduplex is controlled by the ratcheting action of a motor protein. A base — or any
modification present on it — in the central constriction of the pore along with the two bases
upstream and downstream of this central base (the 5-mer context) affects the ionic current
signal that comes out of the pore.

Nanopore can sequence native RNA, i.e., RNA directly, without requiring it to be
converted into cDNA first. Nanopore RNA sequencing, therefore, is also called Native
RNA sequencing or Direct RNA sequencing.

To sequence RNA through the nanopore, it is loaded onto the cis side of the mem-
brane. As RNA has a negative charge, the trans side of the membrane which has a
positive potential on it, attracts the RNA, causing the RNA to translocate through the
pore. As RNA goes through the pore, the otherwise constant ionic current flowing
through the pore is now modulated by the translocating RNA nucleotides.

If the RNA were to pass through the pore under the influence of the applied voltage
alone, it would pass through the pore at a very high speed of 1-22 us/nt (120
mV applied voltage; a-Hemolysin pore) [24]. With electronic circuitry sampling
the analog pore current at the rate of 3012 sample/s in a commercially-available
ONT sequencer, translocation speed of 1-22 us/nt translates into acquiring less
than one current measurement (sample) per nucleotide — too few to decode these
samples later on during basecalling. Each RNA nucleotide should spend at least 5
ms (approx.) in the pore so that at least 10 current samples can be acquired for each
nucleotide at a sampling rate of 3012 samples/s. This means that the voltage-driven
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RNA translocation should be slowed down by at least 100-1000 times for every base
to be sampled sufficiently for basecalling later [28].

A possible strategy to slow down the translocation speed of the RNA to 5ms/nt is to
apply a lower voltage. However, a lower voltage results in lower current amplitudes
and higher noise in the signal making it difficult to distinguish between different
bases. Therefore, to effectively slow down the RNA, a DNA oligo containing a
biological motor protein (helicase) is ligated to the 3’-end of poly(A)+ RNA during
library prep. During sequencing, this motor protein ratchets the RNA molecule
through the pore at a slower more-controlled pace.

To effectively decode RNA nucleotides, the RNA must translocate through the pore at
a consistent pace. One factor that can influence this consistency is the RNA secondary
structure. RNA can fold onto itself in myriad ways that can impact the ratcheting
speed of the motor protein [29]. Reverse transcribing the RNA before sequencing
results in an RNA-DNA heteroduplex that can relax the secondary structure of the
RNA. This results in 1) less variation in translocation speed during ratcheting of
RNA by the motor protein, and 2) more throughput because fewer pore blockages
happen due to a lack of secondary structures, which increases the number of bases
sequenced in a sequencing run.

The current signature generated by a translocating nucleotide encodes not only for
that nucleotide but also for its neighboring bases as well. Two neighboring bases on
both sides of the central base — the so-called 5Smer context — influence the current
signature of the central nucleotide the most. Thus, the same nucleotide in different
contexts may generate completely different current signatures when translocating
through the pore.

The Nanopore’s current signal (also called a squiggle) is saved in an array in a FAST5
file by MinKNOW — the data acquisition and experiment management software
provided by ONT. The squiggle encodes the current signatures of the translocated
RNA nucleotides — and possible modification on them. A base caller pre-trained on
these signatures can then use the information in the squiggle to predict the original
RNA sequence.

Chapter 2 Background
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Advantages of long-read Nanopore sequencing
Native RNA can now be sequenced

Direct RNA sequencing — something impossible with short-read sequencing — can
now be done with Nanopore sequencing. With native RNA sequencing, it is now
theoretically possible to study all the different RNA modifications that get lost when
converting RNA into cDNA. The ability to sequence RNA modifications opens up a
whole new world of opportunities to answer fundamental biological questions that
we previously could not answer due to technical limitations.

Long-range interactions can now be studied

Nanopore RNA sequencing read length is limited only by the size of the RNA
molecules loaded in the sequencer. Complete RNA molecules can be sequenced,
allowing us to get a comprehensive picture of the transcriptome. With reads that
can span all transcript isoforms end-to-end, we can now study the two opposite ends
of the RNA simultaneously to investigate the interaction of 3’-end poly(A) tails with
5’-caps.

Challenges with long-read sequencing
Basecalling accuracy is low

Nanopore sequencing accuracy for RNA is around 93.6%, which is low compared
to Illumina sequencing (99.9%). When Nanopore sequencing became available for
the first time, its accuracy of DNA basecalling was around 85%, which has now
increased to 99.9% with advances in sequencing chemistry and software. The same
progress is expected to happen for Nanopore RNA sequencing in the years to come.
But for now, the low accuracy of the RNA Nanopore reads causes challenges in
analyzing these reads.

Short RNA reads from Nanopore sequencing are difficult to basecall
Short Nanopore RNA reads (80-150 nt long) cannot be accurately basecalled, which

is a major bottleneck in sequencing synthetic RNA oligos that can be, at the most,
100 nt long due to prohibitive costs of synthesizing these oligos any longer. The
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inability to basecalled short RNA reads presents a major hurdle — as you will see in
Chapter 3 — in creating training data for a classifier that can distinguish different
cap structures.

RNA degradation is a major issue during library prep

RNA is highly susceptible to degradation by ubiquitous exonucleases that can degrade
bases at both ends of the RNA. Moreover, RNA is very fragile and its strands may
break during the library preparation. As we aim to study 3’-poly(A) tail and 5’-cap
structures in this thesis, extreme caution is needed to protect these extremities from
nucleases and strand breaks.

Nanopore sequencing methods for RNA

RNA can be sequenced via three different methods using Nanopore sequencing as
explained below and summarized in Table 2.1.

Native or direct RNA sequencing

Direct-RNA sequencing (DRS) can sequence a native RNA molecule end-to-end along
with any modifications that might be present on it. DRS requires starting with 500
ng of poly(A)+ RNA. Such large amounts of starting RNA may be impossible to
obtain in some cases, which is why other sequencing methods (see below) can be
helpful.

PCR-Amplified cDNA sequencing

If the starting amount of RNA is much lower than 500 ng, then amplifying it with
PCR can generate enough material to do DNA sequencing on Nanopore. This method
requires only 4 ng of starting poly(A) + RNA. The RNA is reverse transcribed, and
then strand switching and second-strand synthesis yields double-stranded cDNA that
is then amplified using PCR.
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As this method relies on converting RNA to ¢cDNA, any RNA base modifications
present in the RNA, such as cap methylations, are lost and cannot be studied. How-
ever, it is possible to estimate the poly(A)/(T) tail lengths because this information
is still present in the amplified DNA.

The throughput of this method is higher due to faster motor proteins used in DNA
sequencing. Furthermore, this method can also take advantage of the experimental
basecaller, Bonito, to get 99.9% read accuracy.

2.4.3 Direct cDNA sequencing
The PCR-amplification step in the PCR-amplified cDNA sequencing (above) can be
skipped to do amplification-free or Direct-cDNA sequencing. PCR amplification leads
to PCR bias, and in cases where that is unacceptable, direct cDNA is the way to go.
Again, as this is DNA sequencing, RNA modification information is lost. Poly(A)/(T)
tails are, however, still intact and their length can be estimated.
Direct RNA sequencing PCR-amPIified cDNA Direct cDNA sequencing
sequencing
Amount of starting RNA 500ng 4ng 100ng
Sequencing speed 70bps 450bps 450bps
Detection of RNA base Possible Not possible Not possible
modifications
Basecalling accuracy 93.6% 99.9% 99.9%
Supports full-length reads Yes Yes Yes
Typical number of reads 1 million full-length per 5-10 million full-length per 5-10 million full-length per
flow cell on flow cell on MinlON/GirdION  flow cell on
MinION/GridION MinlON/GirdION
Poly(A) tail profiling Possible Possible Possible
Poly(T)-tail profiling There are no poly(T) tails in  Possible Possible
RNA
Cap type determination Possible Not possible Not possible
Tab. 2.1. Comparison of different methods for sequencing RNA on Nanopore.

2.5

Nanopore output format (FAST5)

An RNA strand translocating through a Nanopore modulates the current passing
through the pore. This current is analog in nature and is sampled by an analog-to-
digital converter at a rate of 3012 samples/nt for RNA and 4000 samples/nt for DNA.

2.5 Nanopore output format (FAST5)
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These series of samples or current measurements for each read are stored in an array
in a FASTS5 file which uses Hierarchical Data Format (HDF5) in the backend.

FASTS files come in two flavors: single-read FASTS files and multi-read FAST files. A
single-read FASTS5 file contains data for just one read, whereas a multi-read FAST5
file packs information about multiple reads (default: 1000 reads). A dataset stored
as multi-read FASTS5 files has a smaller footprint on disk compared to one with single
FASTS files and is also faster to subsequently process due to less I/0 overhead.

The FASTS files produced by Nanopore’s data acquisition software (MinKNOW)
are called raw FASTS files as they contain only raw signal information (Fig. 2.2a).
The raw signal measurements when plotted show the fluctuations in pore current
when the RNA strands passed through the pore and is commonly referred to as a

squiggle.

Basecalling — with Guppy

To find the sequence of bases encoded in the raw Nanopore signal, it must be
basecalled with a basecaller. The production basecaller provided by ONT is called
Guppy. For RNA basecalling, Guppy provides a choice between two basecalling
models: 1) a fast basecalling model that is fast to basecall with but has lower
accuracy (88.6%) and 2) A high-accuracy basecalling model which is slower to
basecall with but has high accuracy (93.9%). We use the high-accuracy model for
basecalling all our datasets.

Move and Trace tables in basecalled FASTS5 files

Guppy uses raw FASTS file produced by sequencing in input and outputs another set
of basecalled FASTS files which have three additional important pieces of information
(Fig. 2.2b):

. The basecalls: Present in the form of a FASTQ field

. The mapping between signal and basecalls: Present in the form of a Move table.

Guppy produces a basecall prediction for every 10 samples (block_stride) of the raw
signal (Fig. 2.2c and d). This 10-sample window is called an event. Some events
may have a new basecall prediction, while other events may have the same base
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persisting from the previous event; this is because some bases may spend more time
in the pore, and consequently, more than 10 samples can be acquired for such bases.

If there is a new basecall prediction in an event, the Move table contains a 1 for
such an event, and if the base from the previous event is persisting in the new event,
the Move table will have a 0 corresponding to the new event. By correlating the
basecalls in the FASTQ to the events in the Move table, we can map out what base
was predicted for which stretch of the Nanopore signal (Fig. 2.2, f and g ).

As events contain 10 samples, the mapping between the signal and the basecalls has
a granularity of 10 samples. In older versions of Guppy (v3.4.3), this granularity was
15 samples, which has been reduced to 10 samples in the latest version (v6.0.1). The
lesser the granularity, the better, as more precise boundaries between neighboring
bases can be obtained. However, this granularity is baked into the trained basecalling
model from ONT and the end-user cannot lower it.

. The base probability of each of the four bases: Present in the Trace table

The Trace table contains eight columns: The first four columns are the A, C, G, U (in
this order) flip probabilities, and the next four columns are the A, C, G, U (in this
order) flop probabilities. This table has one row for each of the events in the Move
table. The probability values — encoded as a number between 0-255 — represent
the basecaller’s confidence in calling a particular base in any event. A lower value
represents the lower confidence of the basecaller in calling a base, and vice versa.

The reason for having flip and flop probabilities (8 columns in total) is because
a mechanism is needed to distinguish between bases in homopolymer stretches,
i.e., when one base in a homopolymer stretch ends and the other one starts. In
a homopolymer, the flip and flop probabilities switch every time the basecalling
algorithm thinks a new base has started; so, in essence, the transition point where
the flip and flop probabilities switch (i.e. change level), indicates the end of one
homopolymer base and the start of the next homopolymer base (see arrows in Fig.
2.3).

A modified base results in the splitting of the base probabilities among the possible
bases indicating the uncertainty that the basecaller has about the real identity of
this base (see base probabilities for modified G [mG] in Fig. 2.3). The splitting of
base probabilities among the four bases when a modified base is encountered by
the basecaller can be a strong feature that can be used by a classifier for detecting
modified bases.

2.6 Basecalling — with Guppy
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Nanopore FASTS5 file structure information. a) A Raw FASTS5 file contains only the raw
signal. b) A basecalled FASTS5 file contains additional information such as the FASTQ, Move
and Trace tables, and c) various attributes most important of which are the block_stride
and the first_sample_template. d) The Move table in which each row is an event. Each
event corresponds to a stretch of raw signal equal to the value of block_stride. A move
of 1 represents the detection of a new base in that event, while a move of 0 represents
that no new base has been detected and that the base from the previous event is still
persisting in the current event. e) By using the Move table and information block_stride
and first_sample_template attributes, it is possible to create a mapping between the raw
signal samples and the basecalled sequence. f) Simplified form of the table in e. g) Raw
data start and end indexes in table f can be used to annotate the raw Nanopore squiggle
with base predictions. In this way, one-to-one mapping between the raw signal and basecalls
can be obtained.
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Fig. 2.3. A plot of the Trace table against the Nanopore signal and the basecalled sequence. The
flip and flop probabilities switch (vertical arrows) whenever the basecaller thinks that one
base within a homopolymer has passed and a new homopolymer base has started to pass
through the pores constriction. If a modified base passes through the pore (for example ™G),
then the base probability gets split up between all the bases rather than being high only for
one base. This is a tell-tale sign that the base passing through the pore is different (in other
words modified) compared to the bases that the basecaller was trained on.

2.6 Basecalling — with Guppy 19



2.7

2.8

20

Basecalling — with Bonito

ONT also has an experimental basecaller called Bonito (https://github.com/
nanoporetech/bonito) which basecalls with higher accuracy than the production
basecaller Guppy. However, at the time of writing, it works only on DNA, and
additionally, it cannot produce FASTS5 files as the output (FASTS5 files have additional
information which helps us to annotate the raw signal with basecalls). Bonito can
produce only a FASTQ file. This means that mapping information between signal
and basecalls, and Move or Trace tables, are not available if Bonito is used to basecall
the data.

Alignment

Once Nanopore data has been basecalling, often the next task is to align it to the
reference genome or the reference transcriptome. Correct alignment of reads to the
reference is quintessential for all the downstream processing steps that build upon
it.

Short-read alignment tools such as BWA-MEM cannot handle Nanopore’s high error-
rates and longer read lengths. With the advent of Nanopore sequencing, many
new alignment tools have come out but none has been as successful as Minimap2.
Minimap2 [30] is now the de facto tool used for alignment of Nanopore data. It
comes with presets to do spliced alignment of RNA to reference genome (-ax splice -
uf -k14), or unspliced to a reference transcriptome (-ax map-ont). It also provides
a convenient python API called mappy that can be used to programmatically align
a read to its respective reference — a feature that we use heavily in this work
(in Chapter 3) to align each read to its custom-made reference during cap-type
decoding.

Chapter 2 Background
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Single-molecule level
prediction of mMRNA cap types
with capable

Summary: mRNA caps are 5-terminal modifications that happen co-transcriptionally
on Pol II-transcribed transcripts in eukaryotes. These caps can be of different types
depending on the modifications present on the first and second transcribed nucleotides
of the mRNA. Existing methods for the detection of these modifications operate at a
bulk level and give only a relative abundance estimate of different caps in an RNA
sample. To understand the role of different cap types at a single-molecule level, I have
developed capable — a software tool that predicts cap types on each individual mRNA
transcript. Different mRNA caps produce different signatures when sequenced through
a Nanopore. Capable uses machine learning to learn these signature features from
training data produced by sequencing synthetically-made cap standards. The trained
model can then be used to predict the cap types in different biological mRNA samples at
the single-molecule level. The work presented in this chapter is still in progress due to
an unprecedented level of challenges involved in creating ground-truth data for training
the classifier. This chapter details all these challenges and our strategy going forward.

Introduction

RNA capping is an evolutionarily conserved modification in eukaryotes that happens
co-transcriptionally at the 5’-end of Pol II-transcribed transcripts. It is the very first
modification on mRNA and happens when the growing RNA transcript is about
25-30 nucleotides long [31].

During RNA capping, an inverted methylated guanosine base (m’G) gets prepended
to the 5-end of the nascent transcripts by a capping complex [32]. Two enzymes —
RNA guanyltransferase and 5-phosphatase (RNGTT) and guanine-N7 methyltrans-
ferase (RNMT) — play a key role in a three-step RNA capping process [33] (Fig.
3.1). RNGTT has two active domains: an RNA triphosphatase (TPase) domain and
a guanosine triphosphate (GTP) domain. In the first step, the RNA triphosphatase
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Fig. 3.1. RNA capping mechanism. a) Step 1: RNGTT’s TPase domain cleaves off v-phosphate
at the end of the nascent pre-mRNA. b) Step 2: RNGTT’s GTP domain adds guanosine
monophosphate to the end of RNA (produced in the first step 1). ¢) Step 3: RNMT
methylates terminal guanine.
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(TPase) domain cleaves off the y-phosphate group from the 5-end of the nascent
pre-mRNA after which the second domain RNA guanyltransferase (GTase) converts
a guanosine triphosphate (GTP) to guanosine monophosphate (GMP), inverts it,
and transfers it to the end of the RNA (Fig. 3.1). Lastly, RNMT imparts a methyl
group at N7 of the terminal guanine base. The RNA now has an inverted methylated
guanosine base (m’G) attached to the rest of the RNA. This type of cap structure is
called capO and can also be written as m’ Gppp-RNA, where N represents the first
transcribed nucleotide.

The bond between the terminal m’G and the first transcribed nucleotide in cap0 is
an unusual 5’-to-5’ linkage (Fig. 3.1). This 5'-to-5’ link only happens at the cap,
and nowhere else is the RNA as all the rest of the nucleotides in RNA are connected
with 5—to-3’ linkages. The inverted nature of the attachment of terminal m’G makes
the capped RNAs inert to degradation by exoribonucleases, and also — as we will
see in later sections — makes it difficult to ligate anything to the capped 5-end of
the RNA.

In addition to capO, other caps are also known to exist (see Fig. 3.2). The cap
methyltransferase 1 (CMTR1) enzyme uses capO transcripts as substrate and methy-
lates the hydroxyl group present at carbon 2 of the ribose sugar backbone of the
first transcribed nucleotide. This modification is known as 2’-O methylation or Nm
modification as it can be present on ribose sugar of any base (N). The resulting
cap is called a capl (m’GpppNmp-RNA). The 2-O methylation can happen on the
ribose sugar backbone of any of the four nucleotides, and hence an N in the notation
m’GpppNm. If the first transcribed nucleotide is an adenosine, then an enzyme
called cap adenosine N6-methyltransferase (CAPAM) can transfer a methyl group at
position 6 of the adenine base to result in a capl-m®Am (m’Gpppm®Amp-RNA)[8]
or a cap0-m®A (m’Gpppm®Ap-RNA). An additional enzyme — cap methyltrans-
ferase 2 (CMTR2) — can methylate the second transcribed nucleotide to result in
cap2 (m’GpppNmpNmp-RNA). It is not known whether cap2,-1 (m’GpppNpNm)
— a cap containing 2’-O methylation on the second transcribed nucleotide but not
on the first — exists in biology or not. There is a possibility that cap2,-1 exists
because the presence of capl 2’-O methylation only enhances the activity of CMTR2,
but CMTR2 does not need methylations of cap0 or capl to methylate the second
transcribed nucleotide [4]. Additionally, while cap0 and capl methylations happen
in the nucleus, cap2 methylation happens in the cytoplasm [34].

The terminal m’G in capO can be further methylated by trimethylguanosine synthase
1 (Tgsl) to form the trimethylguanosine (TMG) / m3%>%7G cap. These caps are
predominantly found on non-coding RNAs such as small nuclear RNAs (snRNAs),

3.1 Introduction
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small nucleolar RNAs (snoRNAs) and telomerase RNAs, but have also been detected
on protein-coding mRNAs, specifically in subsets of selenoprotein mRNAs [35].
TMG capping takes place both in the nucleus (for snoRNAs) and the cytoplasm (for
snRNAs). These mRNAs appear to retain their ability to recruit ribosomes and be
translated despite the TMG cap having a low affinity to the cap-binding protein
elF4E [36], potentially as a result of cap-independent translation initiation. Whether
TMG caps are present on other mRNAs is unknown.
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Cap1
Cap2
Cap0 méAm
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I
Qo
I

TMG cap

@
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Modifications and their loci i |

Guanine

Cap2,-1
Cap2 méAm

Chemical structure of different canonical cap structures in mRNA. The bond between
terminal m’G and the first transcribed nucleotide is formed due to an unusual 5-to-5’
linkage. This 5’-to-5’ linkage only happens at the cap and nowhere else is the RNA as all
the rest of the nucleotides in RNA are connected to each other with 5’-to-3’ linkages. Some
canonical are known to exist in biology (top table), while others are not yet known to exist
(bottom table)

Cap0

Cap2

The caps discussed so far all have a terminal m’G and these caps are collectively
referred to as canonical caps. Recently, a non-canonical (NC) class of caps has
been discovered in eukaryotes. These caps have a metabolite effector instead of the
terminal m’G (see Fig. 3.3). Unlike m’G caps, which are added during transcription,
the non-canonical caps initiate the transcription by serving as a non-canonical
initiation nucleotide (NCIN). Moreover, the non-canonical cap is added by the RNA
polymerase itself in contrast to the canonical caps in which the m’G cap is added by
the capping complex.

Two of the most well-known NC caps are the NAD* and NADH caps formed us-

ing the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD),
respectively. Other NC caps include the flavin adenine dinucleotide (FAD) caps, uri-
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dine diphosphate glucose (UDP-Glc), and uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc) [37]. Many more non-canonical caps such as those containing the
different variations dinucleoside polyphosphates (Np,Ns) have been found to exist

in bacteria [38].
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Fig. 3.3. Chemical structure of eukaryotic non-canonical initiating nucleotide (NCIN) caps.

3.2 Biological role of caps

3.21 Cap0

The m’G of the minimal cap structure capO plays a major role in various processes
that happen during the life-cycle of mRNA. In the nucleus, the cap-binding complex
binds to the m’G to prevent degradation of the RNA and to facilitate the export of
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the mRNA from the nucleus to the cytoplasm [39]. In the cytoplasm, the translation
initiation factor eIF4E binds to m’G and helps in the circularization of RNA into a
loop for efficient translation of the mRNA into protein by ribosomes [40]. The m’G
also serves as a binding site for decapping enzymes that degrade the mRNA once it
is no longer needed [41].

Cap 1

The 2’-O methylation in capl is used by a cell to differentiate its own (self) from
viral RNA. Viral RNAs with 5’-ppp and double-stranded blunt ends, serve as a ligand
for Retinoic Acid Inducible Gene-I (RIG-I) — a cytosolic innate immune receptor
that can distinguish cellular self RNAs from pathogenic non-self RNAs. Once RIG-I
is activated, it triggers a signaling pathway that leads to Type-I interferon (IFN)
production which ultimately destroys the viral RNA. It has recently been shown that
cap0 double-stranded RNA activates RIG-I, but capl double-stranded RNA does not
[42]. Thus the 2’-O methylation of capl abrogates RIG-I activation. Many viruses
have evolved a mechanism to cap their genomes and/or transcripts with cap1[43]
or snatch them from the host RNA (cap snatching) [44], both of which help them
evade the immune response by preventing recognition by RIG-I.

Cap 2

There is no consensus yet on the role of cap2 methylations. Cap2 methylations
are reported to present in as much as 50% of the transcripts [45]. Furthermore,
cap2 mRNA has been found to be 3-fold more enriched in polysomal fractions
compared to non-polysomal fractions, whereas the amount of cap1 transcripts was
the same in both fractions [4]. This indicates that cap2-capped mRNA may have an
increased affinity for ribosomes, or alternatively, methylation of cap2 occurs after the
ribosomes bind to the mRNA. Recently, it has been found that methylation of second
transcribed nucleotide in cap2 impacts protein production level in a cell-specific
manner and contributes to RNA immune evasion [6].

Cap m6Am

The N6 methylation in m? Gpppm®Amp-RNA transcripts increases the stability of the
RNA against decapping when compared to m’ GpppAmp-RNA transcripts [46]. The
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half-life of m” Gpppm®Amp-RNA transcripts is 2.5 hours longer than m’GpppNmp-—
RNA transcripts. Furthermore, the N6 methylation in m’Gpppm®Amp-RNA tran-
scripts makes them less susceptible to microRNA-mediated degradation [47].

TMG cap

The TMG cap modifications are highly conserved in eukaryotes. TMG caps are
believed to be necessary for the snRNAs to fulfill their cellular functions [48]. TMG-
capped ncRNAs have also been found to have higher expression levels compared to
snRNAs lacking TMG-caps [49].

NAD+ and NADH caps

These caps have been found in bacteria and yeast [50, 51], and more recently
in humans [52] and plants as well [53]. NAD-capped transcripts constitute a
small proportion of the total transcript pool from any gene, but they are enriched
in the polysomal fraction and associate with the translating ribosomes [53]. In
mitochondria, NAD"-capped RNA levels can reach up to 60% of mitochondrial
transcripts[54]. NAD gets incorporated in mRNA transcript by Pol II in a largely
statistical manner that reflects the competition of NAD with the canonical initiator
ATP [55]. Unlike canonical caps which impart stability to their respective transcripts,
NAD-caps have been shown to promote the decay of their respective transcripts [52].
Additionally, NAD-capped transcripts are, on average, shorter than non-NAD-capped
transcripts, and are also not translatable in vitro [55].

Whether NAD*-capped transcripts are capable of being translated is still somewhat
unclear. The caps are present in mRNAs that are both spliced and poly-adenylated
[52, 51], but these appear unable to be translated during in vitro translation experi-
ments [55]. In contrast, polysome fractions from A. thaliana found an enrichment
of NAD*-capped mRNAs associated with translating ribosomes [53]. Whether trans-
lation of NAD"-capped transcripts is particular to certain cells or species is therefore
unknown, but it is possible that these transcripts could only be translated under
specific circumstances and potentially make use of cap-independent translation
through e.g., internal ribosome entry sites (IRES).

3.2 Biological role of caps
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FAD caps

FAD caps appear to be enriched in shorter RNAs (<200 nt) [56] and can be decapped
(deFADed) by Nudt12 and Nudt16 [57]. The nature of RNAs capped with FAD caps
is unknown because we currently do not have any method that can specifically
enrich transcripts carrying these caps [56].

UDP-Glc and UDP-GIcNAc caps

These uridine-containing NCINs compete with uridine triphosphate (UTP) for use by
RNA polymerase as initiating nucleotides. The UDP-GlcNAc caps may be among the
most abundant non-canonical caps, even more than NAD", and have been shown
to respond to oxidative and alkylation stresses in yeast [58]. However, no enzymes
involved in its processing have been discovered and no hypotheses as to its specific
function have been forwarded.

Nothing is currently known about the role of UDP-Glc caps.

Existing methods for cap type prediction

There are many methods for cap structure determination — each with its own
strengths and weaknesses — and can be broadly classified into four main categories,
as described below:

Radio-isotope labeling-based method

This method relies (Fig. 3.4) on incorporating a radioactive 3P in the RNA cap
by transcribing the total RNA in a cell extract in the presence of one or more
radioactively-labeled NTPs (such as a->2P[ATP]) [59]. Once all the caps have a
radioactive label, a nuclease T2 treatment in the presence of alkaline phosphatase
cleaves them off from their respective RNAs. Nuclease T2 cannot cleave the phos-
phodiester bond of the ribose sugar with 2’-O methylation. It, therefore, cleaves the
phosphodiester bond of the first non-methylated base 3’ of the 2’-O methylated base.
Thus m”Gppp NmpNp is produced from capl transcripts, and m’Gppp NmpNmpNp
is produced from cap2 transcripts.
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Fig. 3.4.

The cleaved caps are separated on DEAE-cellulose paper electrophoresis which is
then placed against an x-ray film. White bands form in the developed x-ray film in
regions where the radioactive caps had migrated and settled. Different caps migrate
different distances and this is used to resolve between the different cap types (Fig.
3.4).
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Radio-isotope labeling-based method for quantifying different cap types in a sample

This method is technically challenging and requires the use of radioactively-labeled
nucleotides that have the potential to create cellular toxicity artifacts [60]. Further-
more, although this method is sensitive, it lacks specificity [34].
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Mass spectrometry-based methods

Due to the low resolution of radio-isotope labeling-based methods, newer methods
use LC-MS to resolve the different caps better. One of the most recent examples using
this technique is CAP-MAP (Cap analysis protocol with minimal analyte processing)
[61]. This method uses oligo(dT) affinity beads first to enrich poly(A)-tailed and
capped RNAs. Next, a Nuclease P1 treatment hydrolyzes the phosphodiester bonds in
the RNA yielding m’GpppNm dinucleotides and nucleotide 5-monophosphates. The
sample is then passed through a porous graphitic carbon column coupled to a triple
quadrupole mass spectrometer operating in negative ion mode and programmed
to detect only the cap dinucleotides. The mass spectrometer then gives abundance
estimates of different cap-dinucleotides in the sample (Fig. 3.5).
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Mass-spectrometry based method for quantifying different cap types present in a
sample
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Similar approaches for cap quantification include CapQuant [58] and LC-QqQ-MS
[62].

A major flaw of all these methods is that they cannot assess the 2’-O methylation
of the second transcribed nucleotide. Only the m’G cap and the first transcribed
nucleotides (i.e., m’GpppNm) can be investigated with these methods. This is partly
due to the exponentially large number of standards required to calibrate the MS and
the difficulty and costs involved in synthesizing these different standards.

NGS-based method

One of the most recent methods — CapZyme-Seq — quantifies the relative abundance
of NCIN-capped and uncapped reads in a sample using NGS [63]. The sample is first
aliquoted into two: The first aliquot is treated with Rail/NudC enzyme that cleaves
off the NCIN-cap from the NCIN-capped transcripts leaving behind a phosphate
group on these transcripts; this treatment does not modify the uncapped transcripts
with triphosphate ends or the canonical capped mRNAs. The second aliquot is treated
with Rpp which cleaves the phosphodiester bond between « and 3 phosphates of
uncapped transcripts leaving behind a monophosphate; this treatment does affect
the NCIN-capped transcripts. 5’-adaptors containing barcodes are added to both
aliquots, followed by RT primer annealing, cDNA synthesis, and NGS sequencing.
The NGS data from both aliquots are then sequenced with NGS to quantify the levels
of NCIN-capped and non-capped transcripts (Fig. 3.6).

While this method can identify transcripts and transcript start sites associated with
non-canonical caps, it cannot distinguish as to which transcript had which particular
non-canonical cap type.

3.3 Existing methods for cap type prediction
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Nanopore sequencing-based method

Recently, NAD tagSeq II was developed to identify NAD transcripts using Nanopore
sequencing [64]. Briefly, the approach specifically extends the 5-end of only
NAD transcripts with an oligonucleotide tag, while other transcripts remain in-
tact. Nanopore sequence of the resulting library and identification of reads that carry
the oligonucleotide tag reveals transcripts that originally were carrying NAD caps.

To tag NAD transcript with an oligonucleotide, the RNA is first treated with 3-azido-
1-propanol in the presence of ADPRC (Fig. 3.7). The 3-azido-1-propanol replaces the
nicotinamide of the NAD-RNA. The azide-functionalized NAD-RNA molecule is then
ligated (through SPAAC) to a synthetic RNA oligonucleotide (tagRNA) carrying a
DBCO group at its 3’ end. This is followed by poly(A)-tailing of the library, followed
by reverse transcription, and sequencing on a Nanopore. Only NAD transcripts have
the tagRNA. Finding Nanopore reads with tagRNA at their 5’-ends help identify NAD
transcripts.

The bulky click-chemistry involved in the junction between tagRNA and the NAD
transcripts results in signal corruption of bases upstream and downstream of this
junction, and therefore this method cannot accurately identify the transcription start
sites.

Limitations of existing methods

The radio-isotope labeling-based methods and the mass spectrometry-based meth-
ods, can only quantify the relative abundance of different cap types in a given RNA
sample. For these methods to work, the cap must be severed from their respective
transcript before quantification, making it impossible to attribute the quantified caps
back to their respective transcripts. Thus, isoform-level, or even gene-level, cap
type prediction is not possible with these available methods. Furthermore, mass
spectrometry-based methods cannot study cap2 structures because that requires
a nuclease that does not cleave the link between the first and second transcribed
nucleotides. To date, no such nuclease has been found. The Nuclease T2 can keep
the link between first and second transcribed nucleotides intact, but it does not
sever the cap after the second transcribed nucleotide, instead it severes the cap
after the third nucleotide. This means by using nuclease T2, we would end up with
m’GpppNmNmNp fragments that we must quantify using mass spectrometry. How-
ever, to do so would require providing all the 256 different possible combinations

3.4 Limitations of existing methods
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Fig. 3.7. NAD tagSeq II protocol for studying NAD-capped RNA transcripts with Nanopore
sequencing

of m’GpppNmNmNp (the 256 combinations are formed when A, C, G, and U are
substituted for N and for different combinations for methylations on the first and
second nucleotide) — and 32 different possible combinations for m’GpppNmNp as
standards to calibrate the mass spectrometer. Synthesizing such a large number of
standards is a monumental task.
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The NGS-based methods, such as CapZyme-Seq, can identify which transcript se-
quences are NCIN-capped and which of them are uncapped. However, it cannot
tell which of the NCIN-capped transcripts have which particular non-canonical cap
type. Furthermore, this method due to its reliance on Illumina sequenceing will only
sequence a short segment of transcript proximal to the 5’-end of the transcripts. Such
short sequenced fragments may not be enough to distinguish between transcript
isoforms which may differ downstream of the sequenced fragments.

On the other hand, the latest Nanopore-based method, NAD tagSeq II, can only study
NAD capped transcripts. If a transcript has a canonical cap, or has a non-canonical
cap other than NAD cap, then such transcripts are impossible to study with this
method due to its reliance on the transglycosylation reaction that can only work on
the nicotinamide present in the NAD caps. While this method can sequence full-
length NAD transcripts, around 20-30 bases are erroneously basecalled at the 5’ of
the transcripts due to the bulky click-chemistry corrupting the signal of these bases.
Hence the 5-end bases of the NAD-capped transcripts, which may carry crucial
information about the promoter sequences, cannot be studied with this method.

In short, current methods cannot study all the different caps that might be present
in a sample in a transcriptome-wide manner. This represents a major knowledge gap
in our understanding of the transcriptome-wide role of all the different caps — a
gap this thesis aims to bridge.

Nanopore sequencing of RNA cap and the
challenges involved

During Nanopore sequencing of RNA, a motor protein feeds it in the 3’-to-5’ direction
through the pore at a slow and controlled speed (Fig. 3.8a). If there was no
motor protein to control the speed of RNA, the RNA would, under the influence
of applied voltage, pass through the pore at such a fast pace that it would not be
possible to acquire enough current measurements per base to properly decode the
translocated bases during basecalling. The motor protein, therefore, ensures that
each translocating base spends a good amount of time in the pore so that enough
current measurements can be recorded for accurate basecalling later on.

When the ratcheting motor protein reaches the 5’-end of the RNA, it loses its grip on
the RNA and falls off from the RNA strand (Fig. 3.8b). Consequently, approximately
10-20 terminal nucleotides of RNA whiz through the pore at such a fast speed that

3.5 Nanopore sequencing of RNA cap and the challenges involved
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less than one current sample/nt is acquired. Such a small number of samples/nt
are not enough to properly decode these bases. As a result, when the RNA reads
are basecalled, approx. 10-20 nucleotides from their 5-end — including the cap
nucleotides — are always missing (Fig. 3.8c). Thus, the default RNA nanopore
sequencing protocol cannot sequence the RNA caps.

a RNA cap '@ b
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Loss of processive control of 5’-end of RNA during Nanopore sequencing. a) The motor
protein ratchets RNA at a slow controlled speed until it reaches the 5’-end of the RNA. b)
When the sequencing reaches the very end of the RNA molecule, the motor enzyme can no
longer grab onto the molecule and falls off. With the processive control of the motor enzyme
now gone, the ten nucleotides (shown in gray) that still need to be sequenced, go through
the pore so fast that their current signature is undecipherable. ¢) IGV view of the alignment
of basecalled reads with the reference shows that 10-20 bases are mostly missing from the
5-end.
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Single-molecule prediction of
poly(A) tail length in Native
RNA and cDNA with tailfindr

Summary: A poly(A) tail is a stretch of adenosine that is added to the 3-end of the
mRNA during the final stages of RNA processing. Poly(A) tails have myriad roles
— from facilitating nuclear export of RNA and influencing its stability to helping in
translation initiation by forming a pseudo-circular loop with the 5-cap. Existing
methods for investigating poly(A) tail length rely on short-read sequencing. Assigning
the estimated poly(A) tail length to a particular isoform can be difficult when the
isoforms have the same alternative polyadenylation sites. Furthermore, these methods
require converting the mRNA into cDNA which makes it impossible to study poly(A)
tails in combination with other RNA modifications at the isoform level. Together with
developing the Nanopore sequencing protocols, we also developed a computational
method — tailfindr — that allows us to study poly(A) tail length at a single-molecule
resolution in not only Native RNA, but also in direct and amplified cDNA as well. The
poly(A) tail length prediction in Native RNA opens new avenues for studying them in
tandem with cap methylations and other RNA modifications.

The chapter begins with a background on poly(A) tails and their biological role followed
by the state-of-the-art and their limitations. We then discuss how we address these
limitations with our Nanopore sequencing-based approach using tailfindr. We then
append our published work that goes into more details about our approach for poly(A)-
tail profiling in RNA and unamplified DNA. Lastly, we explain some of the follow-up
work that we did for poly(A)-tail profiling in amplified cDNA as well.

Poly(A) tails and their biological role

Poly(A)-tailing is the non-templated addition of adenosines to the 3’-end of the RNA
during the last stages of RNA processing. Before polyadenylation, the transcripts
undergo an endonucleolytic cleavage step that removes some of the bases from their
3’-end [87]. Transcripts from the same gene may be cleaved at different locations,
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which gives rise to alternative polyadenylation sites that can be in the 3’-UTR, exon,
and even in an intron [88]. Next, a poly(A) polymerase adds a stretch of the
newly-formed RNA ends. The nuclear poly(A) tail length falls in a tightly-controlled
species-specific range, e.g., 70-90 nt for yeast [89] and 200-250 nt for mammals
[90, 91].

Once polyadenylation and splicing are complete, poly(A)-binding proteins (PABs)
bind to the poly(A) tails and export the transcripts out of the nucleus. Once
in the cytoplasm, the poly(A) tails may undergo shortening which gives rise to
heterogeneous steady-state poly(A) tail length distribution [90].

The poly(A) tail plays an important role in two of the many mRNA decay pathways:
1) in deadenylation-dependent cap-hydrolysis, and 2) in 3’-5’ degradation by exonu-
cleases. Both these decay pathways require the poly(A) tail to be degraded first. The
rate of deadenylation is a major determinant of the mRNA half-life and depends on
the sequence elements in each individual mRNA transcript [92].

In the cytoplasm, poly(A) tails help initiate translation by forming a closed loop
which the the physical bridging between the 5—cap and 3’-poly(A) tails is mediated
by translation initiation factors eIlF4E/4G and poly(A)-binding proteins [93]. In
this the secondary structure of the mRNA is resolved which facilitates ribosome
recruitment onto the mRNA [94]. Furthermore, once a ribosome has traversed from
5’ to 3’, due the closed-loop structure, the same ribosome can be recycled to do
another round of translation [95]. Short poly(A) tails have recently been found to
be a conserved feature of highly expressed genes [96] indicating that poly(A) tail
length influences how efficiently an mRNA is translated.

Poly(A)-tail profiling

As we have seen, poly(A) tails play a crucial role during the life-cycle of an mRNA.
Their length encodes information about the age of mRNA and how efficiently it
is translated to protein. The process of finding the poly(A) tail length of these
mRNA transcripts is referred to as poly(A)-tail profiling and is a crucial tool in
understanding the role of poly(A) tails in a biological system.

Chapter 4 Single-molecule prediction of poly(A) tail length in Native RNA and
cDNA with tailfindr
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State-of-the-art for poly(A)-tail profiling

In this section, we describe some of the existing methods for investigating poly(A)
tail length.

extension PolyA-tail test (ePAT)

This is a gel-based method for determining the size of poly(A) tails in a chosen
isoform or gene [97]. First, a DNA oligonucleotide with a 5’-poly(T) stretch is
hybridized to the 3’-end of the RNA at 25 °C (Fig. 4.1). A Klenow polymerase extends
the 3’-recessed end of mRNA using dNTPs. Next, the temperature is increased to 55
°C which releases internally primed DNA oligos, followed by reverse transcription
which extends correctly primed DNA oligos. A gene-specific primer and a universal
primer are then used to amplify the cDNA. The cDNA is used in a gel to find the
length of the cDNA. Because the cDNA contains both the gene-specific primer and
universal primer sequence, to find the true length of the poly(A) tails, a poly(A)
standard with 12 nt poly(A) tail and the same gene-specific primer and universal
primer is also used on the gel. When compared against a gel ladder, the difference
between the length of the standard and the gene cDNA bands yields the length of
the poly(A) tail in the gene.

Poly(A) profiling by sequencing (PAL-seq)

Poly(A) tail profiling by sequencing is a short-read method for profiling poly(A)
tails [98]. A DNA oligo with 3’-biotin and a splint oligo with 5-poly(T) stretch
are incubated with total RNA in the presence of T4 DNA ligase (Fig. 4.2). The
products are then digested with RNase T1 and size selected (104-750 nt) on a
gel. Splint-ligation products are bound to streptavidin beads, and while in this
bead-bound state, the 5’-end of then RNAs are phosphorylated and a 5’ sequencing
primer is ligated. The RNA is then reverse transcribed into cDNA, biotin cleaved off,
and the RNA digested away. The cDNA was then clonally amplified on the flow cell
which leaves clusters of forward strands on the flow cell. Each cDNA cluster on the
flow cell is from one original RNA strand. Next, a primer is hybridized immediately
3’-of the poly(A) and extended in the presence of dTTPs and biotin-conjugated
dUTPs — the amount of dUTPs incorporated in the poly(A) tail are proportional
to the length of the poly(A) tail. Next 36 nucleotides of the transcript proximal
to the poly(A) tail are sequenced by synthesis. This is followed by flooding the

4.3 State-of-the-art for poly(A)-tail profiling
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flow cell with fluorophore-tagged streptavidin which binds to the biotin-conjugated
UTPs incorporated in the poly(A) in the earlier steps. Thus each cluster glows in
proportion to the amount of biotin incorporated into the poly(A) tails which is
proportional to the poly(A) tail length. Armed with the 36nt sequence proximal
to the poly(A) tail, each measured poly(A) tail can be attributed to the gene from

TAIL-seq is also a short-read sequencing method for poly(A) tail profiling [99].
Unlike PAL-seq, which uses incorporation of fluorophore-tagged streptavidin to
indirectly gauge the poly(A) length, TAIL-seq directly sequences the poly(A) on the
[llumina sequencer. In this method, the total RNA is depleted of rRNA and then the
mRNA is ligated to biotinylated 3’ adaptors, followed by RNases T1 fragmentation

Fig. 4.1.
which it originated.
4.3.3 TAlL-seq
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Fig. 4.2.
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Poly(A) profiling by sequencing (PAL-seq)

(Fig. 4.3). The fragments containing poly(A) tails are then pulled down using
streptavidin beads and size selected to 500-1000nt. The 5’ ends are phosphorylated,
ligated to 5’ adapters, reverse-transcribed, PCR-amplified, and finally paired-end
sequenced. Read1l sequences 52 nt from the 5’ end of the mRNA (which is used to
identify the gene) while read2 sequence 251 nt from the 3’ end (which is used for
poly(A) tail length determination).
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In TAIL-seq, standard basecalling routines of the Illumina sequencer cannot be used
to basecall read 2. This is because, in long homopolymer T stretches, the phasing
errors are very large, and the basecaller can output a T even when the current
sequence cycle is sequencing a non-poly(T) part of the read next to the poly(T) tail.
This causes an overestimate of the poly(A) tail length if lllumina’s own basecalling
routines are used. The authors of the study, therefore, used a machine learning
approach to analyze sequencer images for cycles and correctly estimate the poly(A)
tail length.

Tail-seq can also sequence poly(A) tails with uridine and guanine content at the 3’-
end which makes it useful for studying non-homogenous poly(A) tails. If sequencing
of only homogeneous poly(A) tails is required then a variation of TAIL-seq called
mTAIL-seq (short for mRNA TAIL-seq) can be used [100].

i mRNA
I_.lgate a DNA 8 AAAAAAAAAAAAAAAAAAAA
oligo using T4
Fragment RNA with AAAAAAAAAAAAAAAAAAAA B
RNase T1
) ) . ~ —— AAAAAAAAAAAAAAAAAAAA B
Bind poly(A)-tail-containing /
fragments to streptavidin beads
for pU” down _ AAAAP\AAA AAAAAAAAAAAAAA\B
Size-select between 104-750nt to — AARAAAAARAAAARRAAAAA ‘P
remove fragments that contain
h ’ AAAAAAAAA, —_
partial poly(A) tails AAAAA D
Phosphorylate 5'-end and
) \ —— AAAAAAAAAAAAAAAAAAAA D
ligate a 5-adaptor
Remove biotin and — AAAAAAAAAAAAAAAAAAAA P
reverse transcribe and PCR
Perform paired-end sequencing.
Read 1 (51nt) identifies the gene, = AAAAAAAAAAAAAAAAAAAA
— TTTTTTTTTTTTTTTTTTITT

and read 2 (251nt) to estimate
poly(A)-tail length

Analyze sequencer cluster images

Read 1 (51nt)

—— AAAAAAAAAAAAAAAAAAAA
for read 2 with machine learning to = TTTTTTTTITTTTITITTTITTTT
estimate the poly(A) tail length Read 2
(251nt)
Fig. 4.3. TAIL-seq method for poly(A)-tail profiling
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4.3.4 Poly(A) inclusive RNA isoform sequencing (PAlso-seq)

4.4

This method is based on PacBio sequencing and can sequence full-length transcript
isoforms along with their poly(A) tails in cDNA [101]. In this method, the 3’-end of
the RNA is extended with dNTPs by a Klenow fragment using a DNA oligo template
with two Us incorporated in it (Fig. 4.4). The user enzymes then cleaves off the
DNA oligo at the U site and the cleaved fragments are then removed. Next, reverse
transcription is performed which leaves CCC in the reverse transcribed strand when
the reverse transcriptase encounters the 5’-cap. Two DNA primers complementary to
each other but one having a GGG overhang hybridize to the 5’-end of the RNA-DNA
duplex and perform template switching. This is followed by PCR amplifications
and SMRT bell adapter ligation at both ends. Sequencing yields a long read with
tandem repeats of the forward and reverse reads and poly(A) and poly(T) segments.
These copies in the read are analyzed to yield a consensus sequence and poly(A) tail
length.

Limitations of existing poly(A)-tail profiling methods

The ePAT requires the use of a gene-specific primer, which makes this method
intractable if the number of genes to be profiled is large. Furthermore, the resolu-
tion of gel is poor and hence the method does not yield sharp poly(A) tail length
estimates.

PAL-seq is a technically complicated protocol to pull off successfully and specifically
requires a now-defunct sequencer — the Illumina Genome Analyzer II. No attempt
has been made to adapt this protocol to modern-day Illumina sequencers due to a
number of low-level changes needed in the sequencer to make this protocol work.

The more recent TAIL-seq protocol captures only 51 nt of the poly(A)-proximal
transcript region. When the different isoforms have the same poly(A) cleavage site
then these different isoforms will have the same poly(A)-proximal sequence. Due to
a lack of difference in the poly(A)-proximal sequence for these different isoforms,
the measured poly(A) could not be uniquely assigned to one or the other isoform as
shown in Fig 4.5. Thus isoform-specific poly(A)-tail assignment cannot be made in
these cases.

Although full-length isoform and associated poly(A) tails can be studied with the
PacBio-based PAIso-seq, conversion of RNA to ¢cDNA is required, which makes it

4.4 Limitations of existing poly(A)-tail profiling methods
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Fig. 4.4. PacBio-sequencing based PAIso-seq method which can be used to study poly(A) tails along-
with their full-length transcript isoforms in ¢cDNA (not in native RNA)

impossible to study the poly(A) tails in conjunction with other RNA modifications

such as the caps.

In summary, current methods do not allow us to study poly(A)-tails transcriptome-
wide along with other important RNA features such as RNA modifications and
cap structures. We aim to develop a Nanopore-based method that can be used to
estimate poly(A) tail length potentially in combination with capable to study cap

82 Chapter 4 Single-molecule prediction of poly(A) tail length in Native RNA and
cDNA with tailfindr



Fig. 4.5.
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Limitation of short-read sequencing methods for poly(A)-tail profiling. Poly(A) tail
length estimates obtained from short-read sequencing-based methods make it difficult to
assign the estimated poly(A) tail uniquely to a particular transcript isoform if the different
isoforms have the same 3’-end sequence.

modifications — and possibly other RNA modifications in the future — which will
prove instrumental in our understanding of the complex world of RNA.

Nanopore sequencing of poly(A) tails and the
challenges involved

In nanopore sequencing, the native RNA molecule is sequenced end-to-end. Any
nucleotide that goes through the pore creates a distinct current signature which,
theoretically, makes it possible to decode its identity. This enables us to sequence
full-length RNA transcript isoforms including their poly(A) tails, caps, and other
modifications.

As a poly(A) tail is a homogenous stretch of adenosines, it creates a constant partial
blockage of the pore current when going through the Nanopore. This results in a
monotonous stretch of signal in the pore current — a tell-tale sign of a homopolymer

4.5 Nanopore sequencing of poly(A) tails and the challenges involved
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going through the pore. The longer the poly(A) tail, the longer this stretch of
monotonous signal.

When the squiggle for the entire read including the poly(A) tail is basecalled, the
basecaller predicts which base corresponds to which current samples in the squiggle.
However, when the basecaller encounters the monotonous signal for the poly(A) tail,
it predicts fewer A's compared to the actual number of As in the poly(A) tail. This
is because the monotonous poly(A) signal does not have any detectable transition
when going from one adenosine base to the next. Thus a poly(A) tail — or any other
homopolymer for that matter — is compressed in the basecalled output (Fig. 4.6a).
If one were to estimate the poly(A) tail length from basecalled Nanopore data, the
estimated poly(A) tail length will mostly be an underestimate of the true poly(A)
tail length. The error between estimated and true poly(A) length is greater in longer
poly(A) tails compared to shorter poly(A) tails.

Our method — tailfindr — in brief

To perform poly(A)-tail profiling in Nanopore data, I have created an R package
called tailfindr (https://github.com/adnaniazi/tailfindr). In brief, tailfindr
accurately estimates the true poly(A) tail length in a Nanopore read by first finding
how long the monotonous stretch of poly(A) signal is time (samples), and then
normalizing it by the average time that nucleotides of that read spent in the pore
(Fig. 4.6b). In this way, tailfindr estimates how many poly(A)-tail bases are encoded
in the homopolymer stretch of the read’s squiggle.

The quality of the estimate is dependent on how accurately the borders of the
homopolymer stretch of the signal are found in the noisy and messy Nanopore signal,
and then how accurately the normalizer (average dwell time of a nucleotide in every
read) is computed.

Appended next is my published work that mentions all the relevant details of the
tailfindr algorithm and the results obtained. This work shows that tailfindr can
not only correctly predict poly(A) tail lengths in RNA, but also in unamplified DNA
as well. After this publication, we worked some more to make tailfindr work on
amplified cDNA as well (more on that in the later sections).

Chapter 4 Single-molecule prediction of poly(A) tail length in Native RNA and
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Fig. 4.6.

A DNA adaptor carrying
motor protein is ligated

to the 3"end of the
poly(A)+ RNA transcript

Nanopore

sequencing of the above
construct results in a
corresponding current
signal

When the signal above is
basecalled,
homopolymers such as
poly(A) tails, are
compressed in the
basecalls due to lack of a
detectable change or
transition in signal for the
homopolymer bases

tailfindr segments the
signal and finds how long
the poly(A) tail is in time.
It also estimates the
translocation rate (i.e.,
how long a base takes on
average to go through
the pore) from the
transcript sequence

The poly(A) tail length in
nucleotides can then be
computed by dividing the
poly(A) tail length in time
by the average
translocation rate

AAAAA

DNA PolyA

adaptor

125
samples

Poly(A) tail length
in nucleotide units

tail

Transcript
sequence

1050

samples

Poly(A) tail length in time

Translocation rate

125 samples
= 5nucleotides

1050 samples / 42 nucleotides
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units.
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ABSTRACT

Polyadenylation at the 3’-end is a major regulator of messenger RNA and its length is known to affect nuclear export, stabil-
ity, and translation, among others. Only recently have strategies emerged that allow for genome-wide poly(A) length as-
sessment. These methods identify genes connected to poly(A) tail measurements indirectly by short-read alignment to
genetic 3’-ends. Concurrently, Oxford Nanopore Technologies (ONT) established full-length isoform-specific RNA se-
quencing containing the entire poly(A) tail. However, assessing poly(A) length through base-calling has so far not been pos-
sible due to the inability to resolve long homopolymeric stretches in ONT sequencing. Here we present tailfindr, an R
package to estimate poly(A) tail length on ONT long-read sequencing data. tailfindr operates on unaligned, base-called
data. It measures poly(A) tail length from both native RNA and DNA sequencing, which makes poly(A) tail studies
by full-length ¢cDNA approaches possible for the first time. We assess tailfindr's performance across different poly(A)
lengths, demonstrating that tailfindr is a versatile tool providing poly(A) tail estimates across a wide range of sequencing
conditions.

Keywords: poly(A) tail; pore seq ing; cDNA; R pack

INTRODUCTION

The poly(A) tail is a homopolymeric stretch of adenosines
at the 3'-end of the majority of eukaryotic mRNAs. These
tails are necessary for the nuclear export of mature
mRNAs (Hector et al. 2002; Bear et al. 2003; Fuke and
Ohno 2008) and influence mRNA stability and translation
(Eckmann et al. 2011).

The poly(A) tail is generated directly after transcrip-
tion by the nontemplated addition of adenosines to the
mRNA 3'-end, a process catalyzed by nuclear Poly(A)-poly-
merases (for review, see Millevoi and Vagner 2010). The ini-
tial length of poly(A) tails generated by this process has
been estimated to be around 250 nt in vitro (Darnell et al.
1971; Edmonds et al. 1971; Raabe et al. 1991, 1994).
After nuclear export, poly(A) length is dynamically regu-
lated by the interplay of 3'-to-5" degradation through exo-
ribonucleases, poly(A) tail stabilization via poly(A) tail
binding proteins, and elongation by cytoplasmic Poly(A)-
polymerases (Diez and Brawerman 1974; Clegg and Piké
1982; Hake and Richter 1994; Mendez et al. 2000; Read
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Corresponding author: eivind.valen@uib.no

Article is online at http:/www.majournal.org/cgi/doi/10.1261/rma.
071332.119. Freely available online through the RNA Open Access
option.

RNA (2019) 25:1229-1241; Published by Cold Spring Harbor Laboratory Press for the RNA Society

et al. 2002). While it has been shown that the poly(A) tail
has a regulatory role, it is still not fully understood whether
a specific length allows for specific regulatory outcomes
(Jalkanen et al. 2014). A minimal poly(A) tail is needed to
prevent quick 3'-to-5' exonuclease degradation (Ford
et al. 1997), yet hyperadenylated RNAs are marked for
fast RNA degradation in the nucleus (Bresson and Conrad
2013; Jalkanen et al. 2014). Besides regulating RNA degra-
dation, poly(A) tail length has been shown to correlate with
translation efficiency during embryonic development
(Beilharz and Preiss 2007; Subtelny et al. 2014), possibly
by favoring a closed-loop structure of the mRNA. However,
recent studies using C. elegans have proposed that shorter
poly(A) tails are more actively translated, while longer tails
are refractory to translation (Lima et al. 2017).

To understand the regulatory role of poly(A) tails, it is
crucial to be able to measure poly(A) tail length genome-
wide with transcript isoform resolution. Up until recently,
estimating poly(A) tail lengths was restricted to tran-
script-specific measurements that relied on PCR and/or
on laborious northern blotting techniques (Nilsen 2015).
These techniques suffer from low throughput, high

© 2019 Krause et al. This article, published in RNA, is available under a
Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0/.
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workload and possible technical artifacts due to amplifica-
tion (Hite et al. 1996; Murray and Schoenberg 2008;
Hommelsheim et al. 2014). Only recently a set of studies
implemented short-read sequencing strategies to study
poly(A) tail length in a transcriptome-wide manner
(Chang et al. 2014; Subtelny et al. 2014; Lim et al. 2016;
Balagopal et al. 2017; Lima et al. 2017; Woo et al. 2018).
While these studies allowed a thorough understanding of
poly(A) tail lengths throughout the transcriptome for the
first time, they are technically restricted to a specific size
of poly(A) tails depending on sample enrichment and se-
quencing strategy. Additionally, most of these techniques
rely on PCR amplification of the poly(A) tail region, which
might lead to amplification artifacts that affect poly(A)
length measurements as well as quantitative comparisons
between long and short poly(A) tails (Hite et al. 1996;
Murray and Schoenberg 2008; Hommelsheim et al.
2014). Finally, and more importantly, these techniques
can only indirectly identify the transcript linked to the
poly(A) by alignment of short sequences representing
the RNA 3'-ends. Thus it is challenging and in many cases
virtually impossible to assign poly(A) tail measurements to
specific transcript isoforms.

Oxford Nanopore Technologies’ (ONT) native RNA se-
quencing strategy allows for the sequencing of full-length
mRNA molecules without amplification artifacts (Jain et al.
2016). The standard library preparation protocol retains
the full poly(A) tail in the molecule to be sequenced, mak-
ing it possible to obtain isoform-specific poly(A) tail length
estimates in a transcriptome-wide manner (Garalde et al.
2018). However, current base-callers do not perform well
on long homopolymer RNA and DNA stretches, resulting
in the length of poly(A) tails not being accurately reported
(Rang et al. 2018).

Here we present tailfindr, an R tool that estimates poly(A)
tail length from individual reads directly from ONT FAST5
raw data. tailfindris able to estimate poly(A) tails from both
RNA and DNA reads, including DNA reverse-complement
reads containing poly(T) stretches. tailfindr uses the raw
data without prior alignment as input, and estimates the
length based on normalization with the read-specific nu-
cleotide translocation rate. We validate the performance
of tailfindr on a set of RNA and DNA molecules with de-
fined poly(A) tail lengths. tailfindr operates on the output
of widely used as well as the most recent ONT base-calling
applications (flip-flop model).

RESULTS

tailfindr estimates poly(A) tail length from base-
called ONT native RNA sequencing

Oxford Nanopore Technologies (ONT) sequencing allows
for the sequencing of full-length native RNA molecules
containing the entire poly(A) tail by ligation of a double-

1230 RNA (2019) Vol. 25, No. 10

stranded DNA adapter to the 3'-end of each RNA mole-
cule (Fig. 1A; Garalde et al. 2018). Indeed, long stretches
of monotonous low-variance raw signal corresponding to
poly(A) tails can be observed at the beginning of most
reads (Fig. 1B). However, since base-calling relies on fluc-
tuations of the raw signal, these low-variance sections are
poorly decoded into the correct nucleobase sequence
(Rang et al. 2018).

To identify the region corresponding to the expected
poly(A) tail, we apply thresholding to normalized raw
data, refine the boundaries of possible poly(A) stretches
based on raw signal slope, and normalize by the read-
specific nucleotide translocation rate (Fig. 1C, for details
see Materials and Methods). tailfindr provides the user
with a tabular output containing the unique read-ID, the es-
timated poly(A) tail length and all factors extracted from the
raw data that are needed to calculate the poly(A) tail esti-
mate (Supplemental Fig. S4A). This allows for custom filter-
ing of the acquired poly(A) measurements by the user.
Optionally, tailfindr allows the user to generate read-spe-
cific plots displaying the raw data and all signal derivatives
generated in the process to estimate poly(A) tail length
(Supplemental Fig. S4B). To test the performance of our al-
gorithm, we pooled six barcoded in vitro transcribed eGFP
RNA samples with different poly(A) tail lengths (10, 30, 40,
60, 100, and 150 nt) and sequenced the pooled samples
with ONT's native RNA sequencing kit in two replicates.
Because the barcodes that define molecules with specific
poly(A) length are located at the 5-end of the eGFP
RNA, only reads that cover the full RNA molecule from 5'-
end to 3'-end were considered for the analysis. After bar-
code demultiplexing, the estimated poly(A) tail lengths
for each length group overall match the expected poly(A)
tail length, with the exception of eGFP with a poly(A) tail
of 10 nt (Fig. 1D). While the molecules with an expected
poly(A) length of 10 nt were measured with a mode of
21, the mode of poly(A) measurements of all other bar-
coded RNA molecules matches well with the expected
poly(A) lengths (30 nt: 33; 40 nt: 41; 60 nt: 59; 100 nt: 91;
150 nt: 136). However, even though the majority of se-
quences show the expected poly(A) tail length, the stan-
dard deviation of poly(A) tail measurements is relatively
high (coefficient of variation between 45% and 79%, see
Table 1). Thisisnota result of poor poly(A) tail boundary as-
signment, as poly(A) tail end coordinates defined by tail-
findr match with coordinates from alignment of the
expected adjacent eGFP sequence with a precision of
around 2 nt (Supplemental Fig. Sé; Supplemental Discus-
sion). Both the high accuracy of poly(A) length estimation
as well as the variation around the average is consistent
across replicates (Supplemental Fig. S1A). Furthermore,
the estimates are robust across different sequencing condi-
tions, as a third replicate performed with the new Library
preparation kit (SQK-RNA002) and omitting the optional
Reverse Transcription reaction resulted in similar poly(A)
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FIGURE 1. Workflow and performance of tailfindr on ONT RNA data. (A) Schematic representation of Oxford Nanopore RNA sequencing. The
motor protein (red) is attached to the native RNA molecule (yellow) at the 3'-end by T4 DNA ligation via a double-stranded adapter (light red) with
oligo-T overhang. The motor protein thus feeds the RNA strand to the pore from 3’ to 5'. (B) Representative signal tracks from eGFP-RNA sequenc-
ing. Upper panel shows normalized signal data calculated by z-normalization through tailfindr (gray, workflow box 3) with smoothened signal track
(black, workflow box 4). Red background indicates ONT adapter signal and green background represents rough borders of poly(A) signal as iden-
tified by thresholding (workflow box 5), whereas yellow background highlights signal corresponding to potential RNA sequence. Lower panel
shows zoom on potential poly(A) region with signal track for the mean of clipped, normalized raw data (yellow, workflow box 6) and slope of
the mean signal track (red, workflow box 7), which are used to refine poly(A) boundaries (dashed vertical lines, workflow box 8). (C) Schematic
workflow of data processing by the tailfindr algorithm for ONT native RNA sequencing data leading to signal tracks shown in B and ultimately
poly(A) estimation. (D) Vertical density plots of poly(A) length estimation on in vitro transcribed eGFP-RNA molecules with known poly(A) tail
length (from left to right: 10, 30, 40, 60, 100, and 150 nt labeled as BC10, BC30, BC40, BC40, BC100, and BC150, respectively). Horizontal black
lines demarcate expected poly(A) length for individual barcodes. Poly(A) estimates exceeding 300 nt were set to 300 prior to plotting. (E) Vertical
density plots of poly(A) length estimation from tailfindr (light green) and Nanopolish (turquoise) on in vitro transcribed eGFP-RNA with poly(A)
length of 40 or 150 nt (labeled as BC40 and BC150, respectively). Poly(A) estimates exceeding 300 nt were set to 300 prior to plotting.
Comparison of all known poly(A) lengths can be found in Supplemental Figure S2B.

length measurements (Supplemental Fig. S1B). Thus, while While this study was in progress, another tool estimating
the poly(A) estimation suffers from significant variation, the poly(A) tail lengths from ONT RNA data was developed
length of most barcoded molecules can be successfully es-  (Workman et al. 2018). Instead of estimating poly(A) tails
timated by the use of tailfindr on ONT RNA sequencing. from base-called data directly, this tool requires read
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TABLE 1. Summary statistics for poly(A) estimates on direct
RNA sequencing experiments

Read Std

Barcode  count Mean Median Mode dev  CoV
10 47,036 53.84 40.47 21 4247 079
30 45,637 56.44  44.96 33 3757 0.67
40 26,317 63.33 52.72 41 38.66 0.61
60 59,591 79.03 69.49 59 43.97 0.56
100 36,390 10853 102.38 91 4957 046
150 29,267 138.29 139.56 136 62.83 0.45

alignment information for the definition of the poly(A) tail
segment. To compare whether our algorithm results in
similar performance, we measured poly(A) tail lengths
from Nanopolish and tailfindr on different barcoded eGFP
molecules. Our analysis showed that both tools matched
well in their estimated poly(A) tail lengths, as exemplified
in Figure 1E for 40 and 100 nt poly(A) tail length (full com-
parison including analyses on published data set by Work-
man et al. 2018 in Supplemental Fig. S2). However, while
both tools agreed in the majority of cases on the definition
of poly(A) segments, we routinely observed slightly higher
estimates from Nanopolish which can be attributed to
differences in normalization (Supplemental Fig. S3A,B).
In conclusion, tailfindr accurately defines poly(A) tail seg-
ments in ONT native RNA sequencing data and provides
similar estimates to Nanopolish while only using base-
called data files as input.

Poly(A) and poly(T) tail length can be estimated
from ONT DNA sequencing data

ONT native RNA sequencing is lower in both quantity and
quality compared to cDNA sequencing approaches and re-
lies on large amounts of starting material [500 ng of poly(A)-
selected RNA, Oxford Nanopore Technologies 2018a,
2019]. Therefore, cDNA sequencing approaches that re-
tain the full-length poly(A) tail would enable studies where
material is scarce as well as increase statistical power of
poly(A) tail estimates. We thus aimed to expand tailfindr
to operate on ONT DNA sequencing approaches as well.
Since standard cDNA approaches result in double-strand-
ed DNA, both poly(A) as well as poly(T) stretches are pre-
sent in ONT sequencing reads. During cDNA sequencing
both of these strands are threaded through the pore sepa-
rately from 5" to 3’ (Fig. 2A). Indeed we observe homoge-
nous stretches of raw signal both at the beginning
[poly(T) tail] as well as at the end [poly(A) tail] of individual
raw read sequences [example for poly(T)-containing read in
Supplemental Fig. S5B].

We extended our algorithm to accommodate ONT DNA
sequencing data output (Fig. 2B). Running the algorithm
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provides the user with a tabular output of tail length mea-
surements as well as optional raw data plots (Supplemental
Fig. S5). We account for the double-stranded nature of
DNA and define the read type [poly(A)- or poly(T)-contain-
ing] by making use of known sequence motifs in Nanopore
adapters (details in Materials and Methods). We tested the
performance of the DNA-specific tailfindr algorithm on
PCR products of eGFP coding sequence with known poly-
(A)/(T) length in two replicates, similar to the spike-ins gen-
erated for native RNA sequencing. As shown in Figure 2C,
the DNA-specific tailfindr approach resulted in estimated
poly(A) and poly(T) lengths close to the expected length
for barcoded molecules [mode of distribution for 10 nt:
10; 30 nt: 29; 40 nt: 39; 60 nt: 59; 100 nt: 97 for poly(A)
and 110 for poly(T); 150 nt: 148 for poly(A) and 155 for
poly(T)]. These estimates were consistent across replica-
tes from different Library preparation kits (Supplemental
Fig. S7) and the poly(A)/(T) end coordinates matched
with coordinates of the alignment of adjacent eGFP se-
quence (Supplemental Fig. Sé). For all poly(A)/(T) tail
lengths bigger than 10 nt, a small subpopulation of reads
with shorter estimated tails could be observed, possibly
due to amplification artifacts that connect barcoded
eGFP sequence with wrong poly(A) tail lengths (see Sup-
plemental Discussion; Supplemental Fig. S8).

Next we compared poly(A)-length estimates from DNA
and native RNA sequencing. We observed that DNA se-
quencing results in significantly more precise estimation
of poly(A) tail length, mainly due to fewer outliers toward
longer poly(A) tail lengths (Fig. 2D). Especially the shortest
poly(A) tail length (10 nt) could be estimated more correct-
ly with DNA sequencing [mode of poly(A) length estima-
tion 10 in DNA vs. 22 in RNA sequencing]. On other
poly(A) lengths, the mode of poly(A) estimation does not
differ dramatically, but the precision is significantly higher
for DNA sequencing (coefficient of variation between 33%
and 50% in DNA sequencing, Table 2). In summary, tail-
findr is able to estimate poly(A) and poly(T) tail size from
ONT DNA sequencing with significantly higher precision
compared to ONT RNA sequencing estimates.

tailfindr is compatible with flip-flop model
base-calling

While this manuscript was in preparation, ONT released a
new DNA base-calling strategy based on flip-flop models.
Flip-flop model base-calling screens the raw signal by
comparing probabilities to either stay in the same nucleo-
tide state or change to a new state. Additionally, the raw
data is read by averaging over two sample points only,
as opposed to averaging over five sample points in stan-
dard model base-calling. These improvements have
been shown to result in higher quality base-calling, and
more importantly to increase the base-call fidelity over ho-
mopolymer sequences (Oxford Nanopore Technologies

4.7 Our published work on tailfindr with more details
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FIGURE 2. Workflow and performance of tailfindr on ONT DNA sequencing data. (A) Schematic representation of Oxford Nanopore DNA se-
quencing. In cDNA approaches, amplification is ensured by oligo-dT-aided anchoring of the end primer (EP, blue) and addition of front primer
sequence (FP, light green) by template switching during reverse transcription. The motor protein (red) is attached to the double-stranded DNA
molecules at both ends by T4 DNA ligation. The front adapter (FA) bears the motor protein, while the end adapter (EA) is a short complementary
oligo that will ultimately appear at the 3'-end of resulting sequences. Both DNA strands are sequenced from 5 to 3'. Thus, oligo-dT stretches will
be present at the beginning of raw data, while oligo-dA stretches appear at the end. (B) Schematic workflow for ONT DNA sequencing data pro-
cessing by the tailfindr algorithm. (C) Vertical density plot of poly(A) (yellow) and poly(T) (gray) length estimates on PCR-amplified eGFP coding
sequence with known poly(A) length. Horizontal black lines demarcate expected poly(A) length for individual barcodes (from left to right: 10, 30,
40, 60, 100, and 150 nt labeled as BC10, BC30, BC40, BC60, BC100, BC150, respectively). (D) Vertical density plot of poly(A)/(T) length estimates
on DNA sequences (gray) and poly(A) length estimates on RNA (light green) (from left to right: 10, 30, 40, 60, 100, and 150 nt labeled as BC10,
BC30, BC40, BC60, BC100, BC150, respectively).

2018b). So far, flip-flop model base-calling is only available
for ONT DNA sequencing data.

We implemented changes in tailfindr to account for the
updates in flip-flop model raw data output. As expected,
flip-flop model base-calling detects more nucleotide trans-
locations (called “moves”) over poly(A) stretches when
compared to standard model base-calling (Fig. 3A, yellow

highlights). To test whether the detected moves agree with
expected poly(A)/(T) length, we plotted the moves from ei-
ther standard model base-calling (Fig. 3B) or flip-flop mod-
el base-calling (Fig. 3C) on eGFP-PCR products with 30 or
100 nt poly(A)/(T) tail length. While flip-flop model base-
calling resulted in significantly more detected moves over
poly(A)/(T) tail sections compared to standard model
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TABLE 2. Summary statistics for poly(A)/(T) estimates on DNA sequencing experiments

Barcode Read type Read count Mean Median Mode Std dev CoV
10 poly(A) 5462 21.27 13.06 10 25.56 1.20
poly(T) 11,072 16.23 12.12 10 19.81 1.22
30 poly(A) 13,063 34.44 31.21 29 16.90 0.49
poly(T) 17,087 31.65 29.98 29 15.15 0.48
40 poly(A) 6946 42.10 40.29 39 17.45 0.41
poly(T) 13,811 39.03 39.48 39 16.64 0.43
60 poly(A) 8261 57.69 59.14 59 18.90 033
poly(T) 10,072 53.27 59.11 59 24.56 0.46
100 poly(A) 3015 93.59 96.82 97 23.11 0.25
poly(T) 3166 91.70 101.18 110 34.41 0.38
150 poly(A) 1767 126.09 138.46 148 41.76 0.33
poly(T) 2535 138.29 130.15 155 50.31 0.42

base-calling, the number of moves still severely under-
estimates existing poly(A)/(T) lengths. Thus even with im-
proved homopolymer base-call fidelity, external tools are
needed to correctly measure poly(A) tail lengths. We
used tailfindr to compare poly(A) and poly(T) tail measure-
ments from the same sequencing reads base-called either
with flip-flop or standard models, and could show that
the estimated poly(A)/(T) tail length is highly correlated
between the two base-calling approaches [R=0.93 for
poly(A); R=0.97 for poly(T); Fig. 3D,E]. We thus conclude
that tailfindr operates on both standard and the most re-
cent flip-flop model base-calling, and provides accurate
poly(A)/(T) length estimates for ONT DNA sequencing
approaches.

DISCUSSION

Polyadenylation at the 3'-end is understood to be a major
regulator of mRNA (Hector et al. 2002; Bear et al. 2003;
Fuke and Ohno 2008; Eckmann et al. 2011). While the
poly(A) length of mRNAs has been under investigation
since the 1970s (Brawerman 1973; Morrison et al. 1973;
Groner et al. 1974; Merkel et al. 1976), transcriptome-
wide analysis of poly(A) tail lengths have only recently
emerged. The advent of Oxford Nanopore Technologies
(ONT) native RNA sequencing technology now allows
direct sequencing of full-length mRNA molecules, which
intrinsically contain their full poly(A) tail, unbiased by po-
tential amplification artifacts (Jain et al. 2016). However,
even the most recent updates in base-calling tools do not
perform well over long homopolymeric sequence stretches
(Oxford Nanopore Technologies 2018b; Rang et al. 2018).

In this work we present tailfindr, a versatile R tool that al-
lows estimation of poly(A) tail lengths from base-called
ONT long-read sequencing data from both native RNA
and DNA sequencing approaches. tailfindr operates on
data from all current and previous ONT base-calling strate-
gies that produce an events/move table in the resulting

1234 RNA (2019) Vol. 25, No. 10

FASTS files. We show that tailfindr is able to detect the
poly(A) tail boundaries of in vitro transcribed eGFP RNA
molecules and estimate their lengths based on read-
specific raw data normalization. For molecules with known
poly(A) tails from 30 nt up to 150 nt the estimates match
well with the expected lengths (Fig. 1D), however the short-
est poly(A) tail (10 nt) was estimated to have longer tails
than expected. We believe that this bias can be explained
by sample contamination of this RNA molecule during pre-
parations, or by inefficient oligo-dT sequencing adapter li-
gation to poly(A) tail stretches at or below 10 nt. Consistent
with the latter explanation we observed that the barcoded
10 nt RNA molecule was underrepresented in the RNA se-
quencing libraries compared to input quantities (Table 3).
Overall, tailfindr correctly estimates poly(A) tail lengths of
in vitro transcribed RNA over a wide range of lengths.

We further show that tailfindr poly(A) tail estimates agree
closely with a recently developed tool that relies on the pri-
or mapping of the data (Workman et al. 2018). While
poly(A) tail boundaries in the raw signal are found to be es-
sentially the same with the two different approaches (Sup-
plemental Fig. S2C,D), the final calculated poly(A) tail
lengths differ slightly (Supplemental Fig. S2A). Specifically,
tailfindr estimates short poly(A) stretches slightly longer
than Nanopolish, while long poly(A) stretches result in
shorter estimates in tailfindr. These differences can be ex-
plained by a different calculation of the average nucleotide
translocation rate (Supplemental Fig. S2B) which is used to
normalize raw poly(A) tail measurements. Nanopolish nor-
malizes by calculating the read-specific median of the sam-
ples per nucleotide after removing 5% of the translocation
rate outliers. We observed that this normalization is
resulting in correct poly(A) estimation in RNA, but not
DNA sequencing approaches (further discussed in Supple-
mental Discussion). Instead, we normalize by the read-spe-
cific geometric mean of samples per nucleotide without a
specific arbitrary outlier threshold. Another difference be-
tween the tools is that tailfindr does not need any sequence
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FIGURE 3. Differences in poly(A) tail estimation for standard and flip-flop model base-calling. (A) Representative raw data squiggle of PCR-
amplified eGFP coding sequence over the identified poly(A) tail region (colored yellow) with associated moves (shifts in raw data representing
possible nucleotide translocations) in both flip-flop (middle panel) and standard model base-calling (bottom panel). Flip-flop model base-calling
detects moves with higher resolution, and calls more moves, especially in the poly(A) tail region (yellow). (B,C) Scatter plot of estimated poly(A)/(T)
tail length (x-axis) and moves detected with standard (B) or flip-flop model base-calling (C) on PCR-amplified eGFP coding sequence with poly(A)
length of 30 nt (gray) and 100 nt (yellow). Colored dashed lines indicate expected poly(A) length. (D, E) Scatter plot of poly(A) (D) or poly(T) (E) tail
length estimated from PCR-amplified eGFP coding sequence with different poly(A) tail lengths that were base-called either with standard (x-axis)
or flip-flop models (y-axis). (R, p by Pearson correlation). Red dashed line indicates x = y; gray line indicates linear fit.
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TABLE 3. Overview of read counts of sequencing experiment replicates

DNA Replicate 1 DNA Replicate 2

RNA Replicate 1

RNA Replicate 2 RNA Replicate 3

(SQK-LSK108) (SQK-LSK109) (SQK-RNAQOT +RT)  (SQK-RNAOOT +RT)  (SQK-RNA0O2 —RT)
Type Poly(A) Poly(T) Poly(A) Poly(T) Poly(A) Poly(A) Poly(A)
BC 10 4884 8572 578 2500 3148 40,425 3463
BC30 11,953 13,898 1110 3189 7724 28,557 9356
BC40 6375 11,294 571 2517 12,044 279 13,994
BC6O 7293 7733 968 2339 11,679 33,222 14,690
BC100 2619 2357 396 809 5439 21,120 9831
BC150 1502 1929 265 606 5219 16,777 7271

Data can be found in the ENA archive, study no. PRIEB31806.

data preprocessing, as it only requires base-called FASTS
files with an events table as input. This allows for poly(A)
tail studies independent of any other tool than the essential
base-caller, which would allow for an integration of the tail-
findralgorithm into the base-calling procedure. This in turn
makes it possible to assign poly(A) tail lengths to individual
reads in parallel to the sequencing procedure, making live
poly(A) tail analysis feasible.

In comparison to recent short-read sequencing-based
strategies to measure poly(A) tails, methods using ONT se-
quencing are currently less precise. Short-read sequencing
approaches promise poly(A) measurements with just a few
bases of deviation due to cyclic incorporation of nucleo-
tides and integration of the fluorescence signal of multiple
molecules toward one single base-call (Chang et al. 2014;
Lim et al. 2016; Balagopal et al. 2017; Lima et al. 2017;
Woo et al. 2018). In contrast, ONT long-read sequencing
measures individual single-stranded molecules, and single
nucleotide changes are detected based on subtle changes
in measured current levels. More importantly, the raw sig-
nal for ONT sequencing does not change overahomopoly-
meric region, making single-event detection almost
impossible. Thus, ONT poly(A) length estimation relies on
normalization of variable data taken from single-molecule
measurements. Most of the variation observed in tailfindr
poly(A) estimation thus comes from the sequencing pro-
cess. However, the sequencing chemistry as well as the
properties of the motor protein is under constant develop-
ment. It is thus conceivable that in the near future an in-
crease in speed and robustness of translocation rates can
be observed, which will have a positive impact on poly(A)
tail estimation (Oxford Nanopore Technologies 2018b).
Updates in both sequencing chemistry as well as base-
calling strategies can dramatically change the appearance
and data obtained by base-calling. This is exemplified by
the differences observed for base-calling the same data
with standard and flip-flop models (Fig. 3; Supplemental
Discussion). While these changes could in theory render
the described algorithms imprecise or worst nonfunctional,
future changes are more likely to reduce the variability and
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increase the precision of the nucleotide translocation rate.
This would address the methods' current weakness and re-
sult in increased accuracy for poly(A) tail estimation using
our tailfindr algorithm.

While currently not as precise in measuring poly(A) tails,
ONT long-read sequencing approaches have unique advan-
tages over short-read sequencing approaches. First, ONT
sequencing is intrinsically a single-molecule technique.
Second, RNA sequencing approaches are amplification-
free, avoiding the emergence of possible amplification arti-
facts. Third, since the native molecule is sequenced as it
comes from the specimen, additional features of the RNA
can be measured directly, as was shown for RNA modifi-
cations (Viehweger et al. 2018; Workman et al. 2018).
Fourth, and most importantly, long-read sequencing allows
direct assignment of transcript isoforms to single molecules
without bioinformatics post-processing, making truly iso-
form-specific measurements of poly(A) tail lengths possible.
Additionally, ONT sequencing allows to study features of
5'-end and 3'-end events of the same molecule in conjunc-
tion with the poly(A) tail length. Together, ONT sequencing
in conjunction with tailfindr poly(A) estimation offers great
potential to combine the study of poly(A) tail length and other
RNA features with transcript-isoform specificity in one assay.

Beyond ONT RNA sequencing applications, tailfindr is
the first tool to show that poly(A) tails can be measured
in ONT DNA sequencing. For DNA sequencing approach-
es tailfindr handles the most up-to-date base-calling strat-
egy using flip-flop model base-calling (Fig. 3), making
tailfindr compatible with all recently produced data sets.
Interestingly, poly(A) estimation from ONT DNA sequenc-
ing is far more precise compared to measurements of sim-
ilar RNA molecules (Fig. 2D). This is likely explained by a
faster and more robust translocation rate with less likeli-
hood for stochastic stalling during sequencing.

tailfindr makes it possible to design specific cDNA li-
brary preparation protocols that retain the full poly(A) tail
in ONT sequencing approaches. This strategy has recently
been shown to allow further insights into poly(A) tail regu-
lation based on PacBio long-read sequencing (Legnini
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TABLE 4. DNA oligos for the design of poly(A)-tailed eGFP constructs

Name Sequence

BC10-eGFP ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTCTGCAGATCTCTTGCCGTCGCC
BC30-eGFP ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTCCTCGAAGCATTGTAAGTCGCC
BC40-eGFP ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTCAACGGTAGCCACCAAGTCGCC
BC60-eGFP ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTCTGCACGAGATTGATGGTCGCC
BC100-eGFP ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTCGACACATAGTCATGGGTCGCC
BC150-eGFP ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTCCATGAGTGCTGAGCTGTCGCC
poly(A) Bfol rev GAGTCCGGGCGGCGC

SP6 Bfo1 fw ATTTAGGTGACACTATAGCGATCCATGC

eGFP_pA_10_rev
eGFP_pA_30_rev
eGFP_pA-40_rev
eGFP_pA 60_rev
eGFP_pA_100_rev
eGFP_pA_150_rev

GCGGCCGCTTTTTTTTTTCTACTTGTACAGCTCGTCCATGC
GCGGCCGCT(x30)CTACTTGTACAGCTCGTCCATGC
GCGGCCGCT(x40)CTACTTGTACAGCTCGTCCATGC
GCGGCCGCT(x60)CTACTTGTACAGCTCGTCCATGC
GCGGCCGCT(x100)CTACTTGTACAGCTCGTCCATGC
GCGGCCGCT(x150)CTACTTGTACAGCTCGTCCATGC

etal. 2019). ONT cDNA sequencing has the advantage to
yield approximately 10x more data per library preparation
compared to native RNA sequencing, and due to amplifi-
cation would allow sequencing experiments starting with
minute  RNA amounts as input (Oxford Nanopore
Technologies 2018c, 2019). Additionally, we envision
that future cDNA applications using Unique Molecular
Identifiers (UMI) will make it possible to acquire multiple
poly(A) tail measurements from each molecule, which
would increase the fidelity of isoform-specific poly(A) tail
measurements. Thus, using tailfindr with specific ONT
cDNA applications offers new approaches to study the
role of poly(A) tail lengths from scarce biological samples.

In conclusion, ONT RNA sequencing offers a new possi-
bility to study poly(A) tail biology by directly associating
poly(A) tail length with other RNA features in a transcript
isoform-specific manner. tailfindr has proven successful
in measuring the poly(A) tail of both RNA and DNA se-
quencing solely from base-called raw data, an approach
that allows real-time analysis during ONT long-read se-
quencing. With the application of tailfindr for ONT DNA
sequencing we allow future development of poly(A)-
retaining cDNA sequencing assays that further increase
the ability to study poly(A) tail lengths from limited material.

MATERIALS AND METHODS
Spike-in generation

To generate RNAwith known poly(A) tail lengths, we used eGFP as
a carrier RNA as it fulfills basic criteria for successful ONT RNA se-
quencing (especially minimal length requirement). The coding se-
quence of eGFP was amplified from pCS2+ —eGFP vector using
High Fidelity Phusion MasterMix (ThermoFisher, #F-531L). The
primers for the PCR included the SPé promoter sequence and a
barcode in the forward primer, as well as a homopolymer T stretch

in the reverse primer (see Table 4). After gel purification of the de-
sired PCR product, a second PCR was performed with a reverse
primer that introduces a Bfo1 restriction site before the homopol-
ymer T stretch (polyA Bfo1 rev, together with SP6 Bfo1 fw, Table
4). After gel purification and Phenol-chloroform extraction, the re-
sulting PCR products were used for Nanopore DNA ligation se-
quencing (see below). For preparation of RNA spike-ins, the PCR
products were digested with FastDigest Bfol (ThermoFisher,
#FD2184) for 2 h and purified by Phenol-chloroform extraction.
An amount of 100-300 ng of purified DNA was used for RNA
in vitro transcription by the SP6 mMessage mMachine kit
(ThermoFisher, #AM1340) following the manufacturer's proce-
dures. The resulting RNA was purified using Zymo RNA Clean &
Concentrator-5 columns (Zymo Research, #R1013).

ONT long-read sequencing

Native RNA sequencing was performed on two replicates using
the ONT kit SQK-RNAQO1 following the manufacturer’s protocol.
One additional replicate was performed using the kit SQK-
RNAQ02 omitting the reverse transcription reaction described in
the manufacturer’s protocol. In brief, 500 ng of poly(A)-selected
RNA was mixed with 100 ng of poly(A) spike-in RNA, or 500 ng
poly(A) spike-in RNA was used alone. The RNA was ligated to
ONT RT adapter (RTA) and used for reverse transcription with
SuperScript Il (ThermoFisher, #18064022; omitted for third repli-
cate). Next, the proprietary sequencing adapter was ligated using
T4 DNA ligase (NEB, #M0202M) and loaded onto ONT
Sequencing Flow Cells (FLO-MIN106 R9.4.1). Sequencing was
performed for 16-24 h using MinKNOW 2 software. All RNA pu-
rification steps were performed with RNAClean XP beads
(Beckham Coulter, #A63987) with 15 min incubation intervals.
DNA sequencing was performed using the DNA Ligation Kits
SQK-LSK108 and SQK-LSK109 on poly(A)-containing PCR prod-
ucts. In brief, 500 ng of pooled barcoded PCR products were
end-prepped using the NEBNext Ultra Il dA tailing module
(NEB, #E75465) and ligated to proprietary sequencing adapters
using T4 DNA ligase (NEB, #M0202M). Purified libraries were
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sequenced on flow cells (FLO-MIN106 R9.4.1) for 24 h using
MinKNOW 2.

Sequencing data processing

RNA and DNA raw reads were base-called using Albacore v2.3.3.
DNA raw reads were additionally base-called with Guppy v2.3.1
using the flip-flop model. Sequencing quality and general metrics
were assessed using NanoPlot (v1.19.0, De Coster et al. 2018).
Reads that passed the default albacore quality filter were mapped
against the eGFP sequence using minimap2 (v2.14-r883) with de-
fault settings for ONT data mapping (-ax splice -uf -14 for RNA;
-ax splice for DNA, Li 2018).

Demultiplexing barcoded spike-ins

All alignments discussed in this manuscript, unless mentioned
otherwise, were performed using Smith-Waterman local align-
ments with Biostrings (Pages et al. 2019) (match score 1; mismatch
score -1; gap opening penalty 0; and gap extension penalty 1).
The normalized alignment score was calculated by dividing the
local alignment score by the length of the query sequence. If
not otherwise mentioned, alignments with a normalized align-
ment score below 0.6 were discarded as unspecific.

Barcoded eGFP RNA reads with known poly(A) length were
demultiplexed by locating the first 29 bases of eGFP sequence
(see Table 5) within the first 250 bases of FASTA strings extracted
from every FASTS file. Next, the barcode was assigned by align-
ing the expected barcode sequences against the extracted read
sequence preceding the eGFP alignment (see Table 5). The bar-
code with highest normalized alignment score (and above thresh-
old of 0.6) was assigned to the read.

To analyze barcoded eGFP DNA reads, the orientation of reads
was investigated by aligning the first 29 bases of eGFP and its re-
verse-complement (Table 5) to the first 250 bases of FASTA

TABLE 5. Sequences used in tailfindr alignments

strings extracted from each FASTS file. A read was considered a
poly(A)-containing read if the normalized alignment score of
eGFP sequence was greater than both the normalized align-
ment score of the reverse-complement of eGFP and the threshold
value of 0.5. Reads where the normalized alignment score of the
reverse-complement of eGFP was higher than the forward eGFP
sequence and passed the threshold value of 0.5 were considered
to be poly(T)-containing reads. For Barcode demultiplexing, first
the sequence preceding the identified eGFP start was queried
for the presence of the experiment-specific PCR front primer in
the case of poly(A) reads, or its reverse-complement for poly(T)
reads (sequences in Table 5). Next, the sequence between front
primer and eGFP locations were used for barcode identification
as described above.

Comparing poly(A) and poly(A)/(T) end coordinates
to eGFP sequence alignments

All alignments were performed using Smith-Waterman local
alignments with Biostrings (Pages et al. 2019) (match score 1; mis-
match score —1; gap opening penalty 0; and gap extension pen-
alty 1). The normalized alignment score was calculated by
dividing the local alignment score by the length of the query se-
quence. If not otherwise mentioned, alignments with a normal-
ized alignment score below 0.6 were discarded as unspecific.
RNA reads with known poly(A) length were screened for the
presence of the eGFP end sequence by querying the reverse
FASTA string against the reverse eGFP end sequence (see
Table 5). Reversing the FASTA sequence is necessary to achieve
similar orientation between the raw signal in events tables (3' to
5') and FASTA string (initially 5’ to 3'). If the first three bases of
the alignment are a perfect match, the sample index correspond-
ing to the first alignment base is extracted by matching the num-
ber of the alignment character in the reversed FASTA string with
the cumulative move count in the corresponding FASTS file. This

Name Sequence
Barcode 10 nt TGCAGATCTCTTGCC

Barcode 30 nt TCGAAGCATTGTAA

Barcode 40 nt AACGGTAGCCACCAA

Barcode 60 nt TGCACGAGATTGATG

Barcode 100 nt GACACATAGTCATGG

Barcode 150 nt CATGAGTGCTGAGCT

eGFP start sequence

eGFP start sequence (reverse-complement)
reverse eGFP end sequence

reverse eGFP end (reverse-complement)
PCR front primer

PCR front primer (reverse-complement)
Nanopore front primer

Nanopore end primer

Nanopore end primer (reverse-complement)

CCACCATGGTGAGCAAGGGCGAGGAGCTG
CAGCTCCTCGCCCTTGCTCACCATGGTGG
GATGAACATGTCGAGCAGGTACGGCTCTCACTA
TAGTGAGAGCCGTACCTGCTCGACATGTTCATC
ATTTAGGTGACACTATAGCGCTCCATGCAAACCTGTC
GACAGGTTTGCATGGAGCGCTATAGTGTCACCTAAAT
TTTCTGTTGGTGCTGATATTGCTGCCATTACGGCCGGG
GAGTCCGGGCGGCGC

GCGCCGCCCGGACTC
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sample index is further used to compare with the sample index
defined by tailfindr as representing the poly(A) end.

DNA reads were split based on the read type [poly(A)- or poly
(T)-containing, see above]. Poly(A)-containing reads were treated
similar to RNA reads (see above). Poly(T)-containing reads were
screened for the presence of the eGFP end sequence by querying
the original FASTA string against the reverse-complement of the
reverse eGFP end sequence (see Table 5). The corresponding
sample index is extracted as described for RNA reads (see above).

tailfindr RNA poly(A) length estimation algorithm

To identify the signal corresponding to the poly(A) tails in RNA
reads, the raw signal from ONT native RNA sequencing is extract-
ed from the FASTS5 files and z-normalized. Next, signal values
above +3 and below -3 are truncated. The resulting processed
raw signal is smoothened by a moving average filter (window
size 400 samples; stride 1) to produce two smoothened signals:
one by calculating the moving average from start to end, and
one from end to start of the signal corresponding to the sequenc-
ing direction. Both smoothened signal vectors are then merged
by point-by-point maximum calculation. Next, the calculated
smoothened signal is segmented into regions being above or be-
low 0.3. The expected signal of the ONT adapter consists of one
segment above and one segment below 0.3 in the smoothened
signal. The poly(A) tail immediately follows the Nanopore
Adapter, thus the next segment in which the smoothened signal
is above 0.3 is considered the poly(A) region, and the boundaries
of this segment are considered the rough start and end of poly(A)
tail (Fig. 1B). The threshold was chosen as the expected normal-
ized signal for regions of homopolymer A on average is 0.89
and even a raw signal with two standard deviations below would
result in a normalized signal of 0.55 (calculations in Supplemental
Rmarkdown file).

The rough start and end are refined by first calculating a mean
signal of the processed raw data contained between these
boundaries through a moving average filter (window size 25;
stride 25). Next, the slope of this mean signal is calculated be-
tween each two consecutive points. The boundaries of the lon-
gest continuous stretch of low-slope values (confined within
bounds of +0.3 and —0.3 of slope signal) between the rough
poly(A) start and end boundaries are considered the precise
boundaries (Fig. 1B). The resulting poly(A) tail measurement in
sample points is then normalized by the read-specific nucleotide
translocation rate. To calculate the nucleotide translocation rate,
the number of sample points per move is extracted from the
FASTS events table of each individual read (a “move” in raw
data describes a single-nucleotide translocation through the
pore as detected by base-calling). If a move of two is detected,
two entries with each half the number of sample points are record-
ed; a move of two corresponds to a nucleotide translocation not
identified by the base-caller. From the resulting vector of sample
points per single move, the geometric mean is computed and
used for normalization of poly(A) tail length.

tailfindr DNA poly(A)/(T) estimation algorithm

Unlike RNA, DNA is double-stranded. Thus, both poly(A) and
poly(T) homopolymer stretches can occur. To determine the

read orientation, the Nanopore-specific front and end primer se-
quences (sequences in Table 5) are aligned against the first 100
bases extracted from FASTS files. A read is considered poly(T)-
containing if the normalized alignment score of end primer se-
quence is greater than that of the front primer sequence, and
above the threshold of 0.6. Conversely, a read is considered
poly(A)-containing if the normalized alignment score of front
primer sequence is greater than that of the end primer sequence,
and above the threshold of 0.6. To ensure that the full poly(A) tail
is present in raw data, the last 50 bases of poly(A)-containing
reads are queried for the presence of the reverse-complement
end primer sequence. Reads where the normalized alignment
score of the reverse-complement end primer is below 0.6 are con-
sidered truncated poly(A) reads and not analyzed further.

To identify borders of poly(A) or poly(T) stretches by similar pro-
cedures, the raw data of poly(A)-containing reads is reversed.
Thus, both the poly(A) and poly(T) stretches are expected to be
at the beginning of the raw signal. The alignment of end primer
is considered the approximate start of the poly(A) or poly(T)
stretch. Next, the raw data is z-normalized and converted to abso-
lute values. To reduce computational workload, calculations to
identify precise borders of poly(A)/(T) stretches are restricted to
3000 raw samples downstream from the rough poly(A)/(T) start
site. This 3000-samples wide search window is wide enough to ac-
commodate poly(A)/(T) tails of ~350 nt length. The mean signal is
generated by applying a sliding window (window size 10; stride
10) to the processed raw signal. Next, the slope of this mean
signal is calculated between every two consecutive points. The
precise start of the respective tail is considered to be the first loca-
tion after the rough start site where the calculated slope is be-
tween —0.2 and 0.2, and the mean signal is between 0 and 0.3
for poly(T) reads and 0 to 0.6 for poly(A) reads. These thresholds
contain all signal with two standard deviations away from the ex-
pected signal from homopolymer poly(T) or poly(A) stretches (cal-
culation in Supplemental Rmarkdown file). To identify the precise
tail end, the slope and the mean signals downstream from the
precise tail start site are tested for violating their respective
thresholds (see above). Since short non-tail-like signal spikes
can randomly occur, we test the signal downstream from this ten-
tative tail end for tail-like signal within thresholds until we either
reach the end of the search window of 3000 sample points, or
find another stretch of tail-like signal of at least 60 sample points
in length. In the latter case, the tentative tail end is updated to the
downstream tail end to account for the spike signal. The maxi-
mum allowable signal length exceeding the threshold that is
located between two tail-like signals has been set to 120 nt
(e.g., 120x read-specific nucleotide translocation rate).

The difference of the precise boundaries define the raw
length of poly(A)/(T) stretches in sample points. This value is nor-
malized by the read-specific nucleotide translocation rate calcu-
lated dependent on the respective base-calling strategy. For
DNA reads base-called with standard models, the nucleotide
translocation rate is defined as the geometric mean of the sam-
ple points per single move, as described for RNA poly(A) estima-
tion. For flip-flop model base-calling, the raw signal is likely
over-segmented resulting in too many nucleotide translocations
(see Supplemental Discussion). To account for this, the average
translocation rate is defined as the arithmetic mean of sample
points per detected move after discarding the 5% highest
outliers.
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SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

DATA DEPOSITION

The code repository can be found at https://github.com/
adnaniazi/tailfindr. The data repository can be found at https://
www.ebi.ac.uk/ena/data/view/PRJEB31806.
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4.8 Poly(A)-tail profiling in PCR-amplified cDNA
(in-house protocol)

In our tailfindr paper (above), we tested our algorithm on RNA and on unamplified
DNA constructs carrying poly(A) tails. We showed that it is possible to estimate
poly(A) tail length in not only RNA but also in unamplified DNA as well. We also
showed that the poly(A) tail estimates in DNA have less variance compared to
poly(A) tails measured using RNA sequencing. This is because the ONT’s DNA
sequencing chemistry is more advanced and more developed than RNA chemistry:
The basecalling accuracy for DNA is higher than RNA, the DNA basecaller produces
a basecall prediction for every 5 current samples compared to 10 for RNA basecaller,
and the DNA feeds through the pore with fewer stalls compared to RNA due to lack
of secondary structures and inter-molecule interactions on both cis and trans sides
of the Nanopore membrane. All of these factors make the estimation of poly(A) tail
boundaries and normalizer more accurate which in turn leads to DNA estimates of
poly(A) tails being more accurate than the poly(A) estimates of RNA and having less
variance.

However, unamplified cDNA provides limited advantages. In some scenarios for
poly(A)-tail profiling, the starting RNA is too little. In these cases, the only way to
get enough material for sequencing is to create cDNA through reverse transcription
and amplify it. We developed an in-house protocol (Fig. 4.7) for making cDNA
using custom splint adapters that would bind to the very end of the RNA poly(A)
tail allowing us to reverse transcribe the RNA along with its complete poly(A) tail.
This is followed by strand switching and PCR for amplification. We had to develop
these custom splint adapters because the adapters in the then available PCR-cDNA
kit, SQK-PCS109, were not designed to bind to the very end of the poly(A) tail but
could bind anywhere in the poly(A) tail stretch which made it impossible to estimate
the true length of poly(A)-tails in cDNA.

Using our custom adapters that would bind to the very end of the poly(A) tail, we
did multiple sequencing runs on PCR-amplified cDNA created from RNA poly(A)
standards (10, 30, 60, 100, 150 nt). We expected to see poly(A) tail peaks at 10, 30,
60, 100, 150 nt (see Fig 4.8a). But what actually observed is that the poly(A) tails
in ¢cDNA for 60, 100, and 150 nt standards were shortened to around 30 nt, and
elongated to 25 nt and 35 nt for 10 nt and 30 nt poly(A) standards, respectively (see
Fig 4.8b). This trend remained relatively unchanged even by changing the choice of
polymerase used.

4.8 Poly(A)-tail profiling in PCR-amplified cDNA (in-house protocol) 99



Fig. 4.7.
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Our approach for amplifying poly(A)+ RNA into cDNA

We argued that this change in length of the poly(A) tail standards during PCR is
because of the priming of incomplete PCR products with poly(A) tails during the
cycles of the PCR as shown in Fig. 4.9. Mispriming may cause the resulting poly(A)
tails to become shorter or longer, depending on where the incomplete PCR product
binds in the poly(A) tail.

To avoid the above-mentioned errors during PCR cycles and to preserve the poly(A)
tail lengths in ¢cDNA, we next tried using rolling-circle amplification of RNA into
cDNA

Poly(A)-tail profiling of rolling circle-amplified cDNA
(in-house protocol)
We argued that if we can somehow avoid using partially-extended primers from

mispriming during PCR cycles, then we can faithfully copy the poly(A) tails from
RNA into cDNA. We posited that rolling-circle amplification can be a possible way
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Fig. 4.8.
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Density
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Poly(A)-tail profiling in cDNA poly(A) standards with poly(A) tail lengths 10, 30, 60,
100 and 150 nt. a) We expected to see nice peaks for each of the five different standards
we sequence. b) What we observe is the longer tails (60, 100, and 150nt) were shortened to
around 30 nt, and shorter tails such as 10 nt and 30 nt poly(A) were elongated to 25 nt and
35 nt, respectively.

to successfully amplify the poly(A)-tails in cDNA. Rolling-circle amplification (RCA)
[102], also known as multiple displacement amplification, uses a circular DNA
template and random primers. A strand displacing polymerase extends these random
primers by traversing the circular template and in doing so produces long single-
stranded concatemers of the sequence in the original circular template. Using rolling
circle amplification, we can obtain long reads that contain concatemers of poly(A)
tails and poly(T) tails (see Fig. 4.10). The advantage of this approach is that we
can obtain multiple measurements of the same transcript and its poly(A). Thus we
can create a more accurate consensus transcript sequence and also a more robust
poly(A) tail estimate by averaging the poly(A) tail length of individual repeats.

We modified tailfindr to work with concatemers obtained from RCA. Briefly, tailfindr
identifies the individual repeats using the Repeated Match Alignment algorithm
[103] to find the adapter sequences flanking the individual repeats. Once the repeats
boundaries are found in the sequence space, these boundaries are then translated

4.9 Poly(A)-tail profiling of rolling circle-amplified cDNA (in-house
protocol)
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primer

_~ fully-extended primer
CCCCACTCGCTCACTCGCACTTCTCTCAGCTTTTTTTTTTTTTTTTTT
GGGGTGAGCGAGTGAGCGTGAAGAGAGTCGAAAAAAAAAAAAAAAAAA

The partially-extended primer

may mis-prime in the next PCR

cycle CCCCACTCGCTCACTCGCACTTCTCTCAGCTTTTTTITITTITITTTT
partially-extended primer E A AAAAAA ]

Mispriming may result in a Mispriming of a partially-extended
artificially-short or |0ng primer from the previous PCR cycle AAAAAAAA
] ACTCGCTCACTCGCACTTCTCTCAGCTTTTTTTTTTTTTTTITTT
poly(A) tails that may serve as L A T QT AT
a template for subsequent GGGGTGAGCGAGTGAGCGTGAAGAGAGTCGAAAAAAAAAAAAAAAAAA
PCR cycles resulting in CCCCACTCGCTCACTCGCACTTCTCTCAGETTTTTTTTTTTTTITTITT
accumulation of these errors Mispriming of a partially-extended _— [YYYYYYVY

primer from the previous PCR cycle

Artificially long

poly(A)-tail due to mispriming \
GGGGTGAGCGAGTGAGCGTGAAGAGAGTCGAAAAAAAAAAAAAAAAAAAAA

CCCCACTCGCTCACTCGCACTTCTCTCAGET TTTTTTTITITTTTTTT

GGGGTGAGCGAGTGAGCGTGAAGAGAGTCGAAAAAAAAAAAAAAAAAA

CCCCACTCG CTCGCACTTCTCTCAGCTTTTTTTTTTTTTTTITT
GGGGTGAGCGAGTGAGCGTGAAGAGAGTCG AAAAAAAA

Artificially shortened /

poly(A)-tail due to mispriming

Mispriming of partially-extended PCR primers can cause the poly(A) tails in amplified cDNA
to be longer or smaller than the poly(A) tail in the original template. The poly(A) tail lengths
in this amplified cDNA, therefore, do not faithfully represent the true poly(A) tail lengths in
the starting RNA sample.

to signal space to delineate the signal boundaries for each repeat. The signal for
individual repeat is then dispatched to the tailfindr algorithm [104] which finds the
poly(A)/(T) stretches and estimates their length. A consensus transcript sequence
is also created from individual repeats of the transcript in a concatemer using the
DECIPHER R package [105], and the poly(A) tail lengths are averaged across the
multiple transcript copies in a concatemer to yield an average poly(A) tail length
(Fig. 4.11).
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Fig. 4.10. Protocol for producing amplified cDNA from RNA using rolling-circle amplification.

The resulting reads have concatemers of original linear cDNA sequences containing poly(A)
and poly(T) stretches.

Using the RCA protocol, we sequenced two RNA standards with 30 and 100 nt long
poly(A) tails on a 750 nt long transcript sequence. We expected to see peaks at 30
and 100 nt but observed only one peak around 18 nt (Fig. 4.12a). We also observed
that the number of repeats of the transcript is low in the majority of the concatemers
(Fig. 4.12b). Furthermore, the transcript sequences recovered from the repeats in
concatemers are much shorter than the expected 750 nt (Fig. 4.12c).

We did many more attempts to optimize the protocol and obtain better poly(A) tail
estimates but did not have much success.

4.9 Poly(A)-tail profiling of rolling circle-amplified cDNA (in-house
protocol)

103



— e e e e AAAAAAANA s e e e mm AAAAAAAA o e e  AAAAAAAA
‘_.ir_:r\.Ji'f #h fwg.q ,..---«_..'f»k'v“l"\' W‘"\J‘M *| M [‘JLHH ”k"\ 4"4 ,]? e |~M«J~

Find adapters flanking each repeat to get
boundaries of each individual repeat and segment
the raw Nanopore signal based on these boundaries

e e mm AAAAAAAA e e e AAAAAAAA — ——— AAAAAAAA

'J\ (L J i ¥ r A o | A

v

Apply tailfindr algorithm to each repeat's signal
and find the poly(A) tail length

LS ikﬁfﬂ '-_M,".‘\ Wy JI"'P#J*I.“.M- \ Wiy '»‘an',‘H -"“"‘"‘“ﬂ.‘
' i i [ o o ' o

Create a consensus sequence from the individual
repeat sequences, and compute average of
poly(A) tail length estimates in all repeats

. . 60nt ,
4 A {1
Repeat 1 mmmm e A A A AAAAA ‘N.,' *”ﬂ ;4?.‘-‘“ -
It
1«J f 63 nt
o
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Fig. 4.11. tailfindr’s approach to estimate poly(A) tail lengths in concatemers produced from rolling-
circle amplification

4.10 Poly(A)-tail profiling cDNA (ONT protocol)

While we were busy with our attempts in debugging the RCA protocol, Oxford
Nanopore Technologies contacted us about their new PCR-cDNA kit — SQK-PCS111
(store.nanoporetech.com/cdna-pcr-sequencing-kit111.html) — which could
successfully amplify poly(A) tail in cDNA. ONT wanted us to make appropriate
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Fig. 4.12.
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Results of poly(A)-tail profiling on rolling-circle amplified cDNA. a) We expected to
see two peaks around 30 and 100 nt (top panel) corresponding to two different poly(A)
standards used in the experiments, but we observed a single peak around 18 nt (bottom
panel). b) Majority of the concatemers had only one repeat in them. ¢) We used transcript
sequences of length 750 nt in the experiment, but the majority of the transcripts recovered
from the individual repeats were not much shorter than 750 nt.

changes in tailfindr to work with this kit, which we did, and now tailfindr works
out-of-the-box for this kit.

What this kit does differently compared to our approach is digesting away the part
of the splint adapter that has the poly(T) stretch before reverse transcription of the
RNA (Fig. 4.13). It is accomplished by using a mixture of Exonuclease I and USER.
Exonuclease I degrades a DNA strand from 5-to-3’ when it is double-stranded. It
can also degrade 3’-to-5’ but in a much slower way. The U in the splint adapter
ensures that the degradation of the top adapter ligated to the RNA poly(A) tail stops
at the abasic site left because of the excision of U by the USER enzyme. Next, a
shorter primer, which is complementary to the DNA adapter left in the RNA strand,
starts the reverse transcription reaction. We think that these additional steps help in
faithfully copying RNA polyA tails in cDNA.

Using RNA standards of poly(A) tail length 10, 30, 50, 70, and 100 nt and amplifying
them with PCS111 kit into amplified cDNA, we were able to successfully validate
that the tailfindr can estimate correct tail lengths in both RNA and cDNA (Fig. 4.14
a and b).

If needed, the PCR step in this PCS111 can be omitted during library prep and the

sequencing adapters can be ligated immediately after the second-strand synthesis.

This direct cDNA sequencing (i.e. without PCR amplification) and tailfindr can also
be used on such data for poly(A)-tail profiling.

4.10 Poly(A)-tail profiling cDNA (ONT protocol)
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Fig. 4.13. PCR-cDNA sequencing protocol of SQK-PCS111 kit. The kit digests away part of the splint
adapter before reverse transcription which helps prevent mispriming during PCR cycles and
consequently leads to faithful reproduction of poly(A) tails in amplified cDNA.
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Fig. 4.14. Poly(A)-tail profiling results. a) on RNA tail standards b) on cDNA tail standards obtained
by PCR amplification of RNA standards in (a) into cDNA with the newly-released PCR-cDNA

kit PCS111.
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With this new kit out and working as expected, we abandoned our RCA approach
for amplifying RNA into cDNA.

Discussion and future perspectives

With tailfindr, we have developed a method that can perform poly(A)-tail profiling
in native RNA, direct cDNA (unamplified), and PCR-cDNA transcriptome-wide at a
single-molecule resolution. tailfindr also provides the start and end coordinates of a
poly(A) tail which then enable researchers to also home in to the polyadenylation
sites and investigate alternative polyadenylation.

The default ONT protocols for native RNA, direct cDNA (unamplified), and PCR-
cDNA sequencing enrich poly(A) + RNA and can only study this small sub-population
of RNA. However, total RNA is composed of poly(A)- transcript species that could be
of potential interest to many who may want to study polyA+ and poly(A)- transcripts
simultaneously while needing to have poly(A) tail estimates for poly(A) + transcripts.
To cater to these needs, a new protocol — Nano3P-seq [106] — was developed
and we worked together with the developers of this method to adapt tailfindr such
that it now works with both poly(A) + and poly(A)- transcripts sequenced with this
protocol. This protocol allows researchers to do poly(A)-tail profiling on unamplified
c¢DNA made from poly(A)+/- RNA. Instead of using a splint-adapter with poly(T)
overhang to the RNA, Nano3P-seq uses a splint-adaptor with a single N overhang.
In doing so Nano3P-seq can sequence all the different RNA species including those
with non-homogenous poly(A) tails such as transcripts with poly(A) tails that are
poly-uridinated at their 3’-ends.

In eukaryotes, poly(A) tails can also be trailed by a stretch of uridine bases [107].
Furthermore, non-polyadenylated transcripts can be tailed with poly(U) stretches
that are thought to be essential for their degradation [108]. Currently, tailfindr
only works on poly(A) stretches in RNA. But the algorithm could be modified and
extended to estimate the length of poly(U) tails both when it appears alone or in
combination with a poly(A) tail. We are currently collaborating with University of
Syracuse in developing tailfindr for such use cases.

4.11 Discussion and future perspectives
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Conclusion and future outlook

By developing the capable and tailfindr frameworks, I am providing the scientific
community with tools to predict cap modifications and poly(A) tail at a single-
molecule resolution. Both these tools can be applied on the same reads yielding
for each read a prediction of cap type at its 5’-end and an estimate of the poly(A)
tail length at its 3’-end. Currently, there exists no method that can simultaneously
probe the cap type and tail length of an RNA in a single assay. This approach has
the potential to shed new light on the role that RNA caps and poly(A) tails play in
the lifecycle of an RNA molecule.

Since its publication in 2020, the tailfindr tool has been cited 30 times and has
been directly used in research involving pathogen surveillance and the study of gene
expression and tail dynamics in humans, zebrafish, mouse, and SARS CoV-2 [109,
106, 110, 111]. tailfindr has also been integrated into the Master of Pores NextFlow
pipeline [112] allowing its deployment on clusters and other runtime environments.
Based on our work on tailfindr, we have already established two fruitful ongoing
collaborations with research groups in Spain and US for extending tailfindr with new
functionality for studying poly(A)-tails in total RNA libraries, and for investigating
tails with non-adenosine residues.

Currently, tailfindr only predicts the poly(A) tail length in individual Nanopore reads,
and the downstream analysis of these tail predictions is then left for the end-users to
work out. In the future, we hope to include in tailfindr the functionality for studying
alternative polyadenylation sites, isoform- and gene-specific poly(A) tail lengths,
differential poly(A)-tailing and alternative polyadenylation site usage. Furthermore,
with ONT’s recent announcement (Clive Brown’s technology update; March 30,
2022) of discontinuation of the R9 pore by the end of 2023, we will also have to
adapt tailfindr for the newer dual-head R10 pore. Keeping up with the chemistry
and pore updates will be crucial for the long-term survival of this tool. We hope that
the R10 pore will be able to more accurately basecall shorter tails and non-adenosine
residues at the end of poly(A) making the job of tailfindr easier in these cases.
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A plot of the Trace table against the Nanopore signal and the base-
called sequence. The flip and flop probabilities switch (vertical arrows)
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RNA capping mechanism. a) Step 1: RNGTT’s TPase domain cleaves
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is formed due to an unusual 5-to-5’ linkage. This 5’-to-5’ linkage only
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Loss of processive control of 5’-end of RNA during Nanopore se-
quencing. a) The motor protein ratchets RNA at a slow controlled
speed until it reaches the 5-end of the RNA. b) When the sequencing
reaches the very end of the RNA molecule, the motor enzyme can no
longer grab onto the molecule and falls off. With the processive control
of the motor enzyme now gone, the ten nucleotides (shown in gray)
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current signature is undecipherable. ¢) IGV view of the alignment of
basecalled reads with the reference shows that 10-20 bases are mostly
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Our method for decoding cap types in mRNA. a) Classifier training.
To create training data for the classifier, 67-nt long synthetic oligos are
ligated to longer carrier GFP molecules. The synthetic oligos contain
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and 2) that may carry a 2’-O methylation depending on the cap type
that the oligo is emulating (as shown in the accompanying table).
Features are extracted from 26 positions (numbered in gray from -5
to 20) from the sequenced Nanopore data and are used to train the
classifier. b) Cap type predictions in biological mRNA. The inverted m’G
is first removed by Cap-Clip enzyme, followed by oligocapping with
GeneRacer sequence from the GeneRacer kit. Features are extracted
from the sequenced Nanopore data and the trained classifier from step
(a) is used to predict thecap types. . . . . . . .. ... ... ... ..

Synthetic capped oligos for classifier training. a) Relative abundance
of different transcription start site dinucleotides determined from CAGE
human and zebrafish datasets in FANTOMS5 database. Nine out of
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prioritized for making training oligos for now. b) Uptil now, we have
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cap2, and cap2,-1) out of five cap classes. The classifier is currently
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sequenced. The number of reads for these classes show that we have a
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Minimap2 alignments at 5’-end of mRNA transcript. a) Minimap2
mostly fails to align the 5-end of the mRNA transcripts due to its
inherent limitations. The result is unaligned or soft-clipped bases
(shown as colored letters in the reads) at the 5-end. This presents a
major hurdle in determining accurate transcription start site loci of
these reads. b) Alignment after polishing the 5’-ends of alignments in
(a). After performing a polishing step, the previously soft-clipped bases
are now successfully aligned to the reference genome. The 5-ends of
the alignments now represent the transcription start sites. . . . . . . .
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5, 8, and 10 have a very small dwell time whereas kmers in positions
-3, 4, and 6 have a high dwell time. Furthermore, different kmers have
widely different value ranges. b) To remove kmer sequence-specific
effects from the dwell time, and to capture only the 2’-O methylation-
specific modulations in the dwell, this engineered feature represents
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Mechanism of dwell time change due to cap 2’-O methylations.
a) When the cap is in the motor protein, the motor protein struggles
to ratchet these methylated bases causing the bases 11 and 12 posi-
tions downstream of the cap which are currently being sampled in the
constriction of the pore to spend an unusually long amount of time
in the pore. Consequently, the bases in positions 11 and 12 have a
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Nanopore current for training oligos a) Raw current level. Different
kmers have different current levels which are further modulated by the
cap modifications. Because different cap type oligos were sequenced
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MinKNOW in each run, this results in a run-specific shift in current as
evident from the different overall current levels for the different cap
types. A classifier trained on Nanopore current should only learn cap-
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in the current. b) Standardized current level obtained by first shifting
(or normalizing) the observed current level towards the pore model
using the Theil-Sen estimator, and then standardizing the resulting
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Chapter 30

Transcript Isoform-Specific Estimation of Poly(A) Tail
Length by Nanopore Sequencing of Native RNA

Adnan M. Niazi, Maximilian Krause, and Eivind Valen

Abstract

The poly(A) tail is a homopolymeric stretch of adenosine at the 3’-end of mature RNA transcripts and its
length plays an important role in nuclear export, stability, and translational regulation of mRNA. Existing
techniques for genome-wide estimation of poly(A) tail length are based on short-read sequencing. These
methods are limited because they sequence a synthetic DNA copy of mRNA instead of the native
transcripts. Furthermore, they can identify only a short segment of the transcript proximal to the poly
(A) tail which makes it difficult to assign the measured poly(A) length uniquely to a single transcript
isoform. With the introduction of native RNA sequencing by Oxford Nanopore Technologies, it is now
possible to sequence full-length native RNA. A single long read contains both the transcript and the
associated poly(A) tail, thereby making transcriptome-wide isoform-specific poly(A) tail length assessment
feasible. We developed ailfindr—an R-based package for estimating poly(A) tail length from Oxford
Nanopore sequencing data. In this chapter, we describe in detail the pipeline for transcript isoform-
specific poly(A) tail profiling based on native RNA Nanopore sequencing—from library preparation to
downstream data analysis with zailfindr.

Key words Poly(A) tail, Nanopore sequencing, Native RNA, tailfindr, R, Transcriptomics

1 Introduction

A poly(A) tail is formed by the nontemplated addition of a stretch
of adenosines to the 3'-end of messenger RNA (mRNA) during
RNA processing in the nucleus [1]. It mediates the transfer of
processed RNA from nucleus into the cytoplasm in eukaryotes
[2]. Furthermore, it is known to stabilize or destabilize the
mRNA depending on its length: relatively long poly(A) tails inhibit
degradation of mRNA by 3'-exonucleases and 5'-cap hydrolysis,
whereas short poly(A) tails mark the mRNA for degradation by the
exosome [3]. Additionally, the length of the poly(A) tail can, under
certain conditions, influence the translational efficiency of the
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mRNA [4-6]. Measuring isoform-specific poly(A) tail length over
the whole transcriptome is therefore important in understanding its
role in regulation of mRNA localization, mRNA half-life and trans-
lation regulation.

Existing methods for transcriptome-wide estimation of poly
(A) tail length—which are primarily based on Illumina short-read
sequencing technology [ 5, 7, 8 | —have numerous limitations. First,
RNA in its native form cannot be sequenced using Illumina
sequencing: the RNA must first be reverse transcribed into
c¢DNA, and subsequently amplified with PCR cycles to form clus-
ters on the flow cell that are sequenced by synthesis. The conversion
of RNA into cDNA results in loss of information; for example, the
occurrence of native RNA modifications might be interesting to
study along with the poly(A) tail length. Second, the repeated PCR
cycles may introduce artefacts in the homopolymer regions that
may cause errors in poly(A) tail length estimation [9-11]. Third,
most of these methods estimate poly(A) tail length indirectly by
inferring ¢cDNA poly(A) or poly(T) segments using elaborate
library preparation steps or custom-designed software for proces-
sing raw images of the sequencing clusters.

This renders these methods not only time-consuming but also
technically challenging. Lastly, as Illumina sequencing is a short-
read sequencing technology, a sequenced read from these methods
contains only a small segment reflecting parts of the transcript
proximal to the poly(A) tail. With such partial transcript fragments,
transcript isoform-specific poly(A) tail assignment is hard, and in
many instances impossible. This is because a read may align equally
well to two or more transcript isoforms, making it impossible to
decipher as to which transcript the read—and its associated poly
(A) tail measurement—Dbelongs to (see Fig. 1). Until recently it was
therefore impossible to address whether different transcript iso-
forms have different poly(A) tail lengths.

With the advent of long read sequencing methods it recently
became possible to sequence full length transcripts and their asso-
ciated poly(A) tails [12-14]. In addition to offering long read
sequencing only limited by the molecules integrity [15], Oxford
Nanopore Technologies (ONT) novel sequencing approach also
allows to sequence native RNA molecules without the conversion
into cDNA [16]. This new technology has the potential to address
isoform-specific poly(A) length measurements and RNA modifica-
tion detection in a single assay [ 14, 17].

In this chapter, we will explain how ONT’s sequencing
approaches allow direct poly(A) measurement of native RNA (Sub-
heading 2), describe the necessities for efficient Nanopore library
preparation (Subheading 3), and how to process the data generated
using tailfindr to perform transcriptome-wide isoform-specific
poly(A) tail profiling (Subheading 4).
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Fig. 1 (@) A poly(A)-tailed mRNA. (b) A full-length transcript uniquely and
unambiguously maps to the isoform that it originated from. In the illustrated
case, the read perfectly aligns to isoform X of gene A, and the measured poly
(A) tail length can be uniquely attributed to isoform X. (c) A partially sequenced
transcript can map equally well to multiple transcript isoforms, making it
impossible to decipher from which of the many possible isoforms the read
originated from. In this case, the partially sequenced transcript aligns equally
well to both isoform X and isoform Y of gene A. Thus transcript-isoform specific
poly(A) tail length assignment is not possible

2 Nanopore Sequencing

In ONT sequencing approaches, a protein nanopore is suspended
in a hydrophobic material (membrane) that separates two buffer-
filled wells [18]. A cross-membrane voltage of —180 mV is applied
such that the t7ansside of the membrane is set at a positive potential
compared to the cis side (see Fig. 2). This causes a constant ionic
current to flow through the pore. The molecule to be sequenced,
which can be either DNA or RNA, is located on the cis side of the
membrane. Under the influence of the applied voltage, the nega-
tively charged nucleotide strand threads through the pore. To
ensure a homogeneous translocation rate (450 bps for DNA and
70 bps for RNA [19]), and to minimize the influence of secondary
structure or DNA duplex binding energy, the DNA or RNA is fed
into the pore by the ratcheting action of a motor protein. The
nucleotides located in the constriction of the pore—5-6 nucleo-
bases at any given time—modulate the current passing through the
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RNA-cDNAduplex
feeding into the pore
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Fig. 2 RNA sequencing using ONT Direct-RNA sequencing. The RNA to be
sequenced is first reverse-transcribed to make an RNA—CDNA duplex; this step
removes RNA secondary structure that may otherwise cause pore blockage. The
RNA-cDNA duplex, along with the ligated adaptor that contains the motor
protein, is initially located on the cis side of the membrane. The tethers attached
to the DNA adaptor have an affinity for the lipid membrane and help anchor the
RNA-cDNA duplex to it. Under the influence of the applied voltage, the duplex
shifts toward the pore, and eventually the RNA part of the duplex threads through
the pore. The motor protein unwinds the RNA-cDNA duplex, and ratchets the
RNA through the nanopore one base at a time. The fluctuations in the pore
current as the RNA strand translocates through the pore are recorded

pore, thereby creating sequence-specific modulations in the cur-
rent. This current is sampled at a rate of 3012 samples/second and
saved as an array in a . fast5 file by MinKNOW—the data acquisi-
tion and experiment management software provided by ONT. The
resulting signal trace—the so-called squiggle—thus contains the
information of the contiguous nucleotide strand and possible
RNA modifications and should be stored as “raw data files.” The
raw data files are then used by a basecaller to predict the original
sequence.

In the special case of ONT native RNA sequencing, the motor
protein is added at the 3’-end of the molecule by poly(A)-guided
ligation. Reverse transcription is optional, as the synthesized cDNA
strand will not be sequenced at any time. Nevertheless, it is recom-
mended to perform reverse transcription, as the resulting RNA-
¢DNA heteroduplex is devoid of secondary structure that poten-
tially interferes with pore translocation. Furthermore, the RNA—
cDNA heteroduplex is more stable than single-stranded RNA
toward degradation by RNases (se¢ Note 1). The added motor
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(a)
3 Original sequence 5
CAGUUCACGGAUUGCGACCGGACGUUGUGUUGCGUGUCUUGUGCU |

(b) Raw nanpore signal

(c)

3 Base-called sequence 5
N C Gl UCACGGAUUGCGACCGCACGAUGUGUUGCGUGUCUUGUGGU

Fig. 3 Current basecalling algorithms underestimate poly(A) tail length. (a) A full-length mRNA with a 17-nt
long poly(A) tail. (b) Raw signal generated by ONT sequencing when the sequence shown in (a) passes through
the nanopore. Notice that the signal corresponding to the poly(A) tail is low-variance and monotonous. (c)
Sequence predicted by the basecaller. Notice that the basecaller predicts only one adenosine in the poly(A) tail
whereas the original sequence has 17 adenosines in the poly(A) region. This shows that although the raw
signal for poly(A) tail is captured using Nanopore sequencing, it is not basecalled properly, preventing poly
(A) tail length estimation directly from basecalling. N.B.: The sequences shown in this figure represent
exemplified data

protein threads the RNA through the pore from its 3’-end to the
5'-end. The resulting current signal thus contains in this order:
signal for the adaptor sequence that initially carried the motor
protein, the poly(A) tail and the full-length transcript.

Although in theory it should be possible to infer the length of
the poly(A) tail from the basecalled sequence alone, in practice this
is not the case. When the raw signal is basecalled, the number of
adenosines (reflected as A in sequence) called by the current base-
callers in the poly(A) tail region is far lower than the actual number
of adenosines in the poly(A) tail of the original RNA sequence (see
Fig. 3). This is because the raw signal corresponding to a homopol-
ymeric stretch of adenosine is a monotonous current devoid of any
detectable transition from one adenosine to the next [20, 21]. The
basecaller cannot decide where the signal of one adenosine ends
and the next one starts; the entire poly(A) tail signal is therefore
treated as a single adenosine base that got stalled in the nanopore
for a long time. Thus, the poly(A) tail length currently cannot be
faithfully estimated from basecalled sequences directly as it will
often underestimate the actual poly(A) tail length. To accurately
estimate the poly(A) tail length from Nanopore sequencing data,
we developed an R package—tailfindr [12]. The software uses
basecalled . rfascs files and annotates the reads with poly(A) tail
estimates (for more details refer to Subheading 4).
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In the following sections, we will describe how to successtully
perform library preparation for native RNA sequencing using
Nanopore, and how to use taulfindr to obtain isoform-specific
poly(A) tail measurements from the obtained data.

3 Library Preparation

ONT sequencing provides single-molecule long-read sequencing
applications for RNA for the first time. However, the quality of the
produced data and—most importantly—the quantity of data out-
put directly depends on the quantity and quality of the provided
RNA. It is therefore essential to make sure that enough RNA of
good quality can be achieved prior to planning the experiment. Any
RNA degradation not only affects the read length of the data
obtained, but also makes library preparation inefficient, as it is
based on poly(A)-dependent ligation of DNA adapters (Fig. 4).
Therefore, all experimental procedures upstream of sequencing
should be reviewed for forces that could degrade molecules, such
as vigorous shaking or pipetting. Furthermore, RNA should be
extracted as fresh as possible, or alternatively stored at -80C in
RNA storage medium (TRI reagent or RNALater). Extraction
should be chosen to avoid any contaminants, as these could be
detrimental to the sequencing chemistry. In our experience, silica-
column based purification strategies not only degrade RNA by
physical force, but also retain Guanidine-hydrochloride contamina-
tion. We thus recommend the use of phenol-chloroform extraction
methods, such as the use of TRI reagent. These are more time-
consuming, but in our hands yield higher quality RNA with mini-
mal contaminant carry-over. An example workflow for the use of
TRI reagent for purification, as well as poly(A) enrichment based
on the Poly(A)Purist MAG Kit, is described in an exemplary proto-
col at the end of this section.

Enriching for poly(A)-containing RNA is necessary in current
ONT protocols, as the adapters are added specifically to the poly
(A) tail. The addition of adapters happens through RNA ligation.
However, the presence of high amounts of nonpolyadenylated
RNA (such as rRNA) can significantly impact the efficiency of
adapter ligation by titrating the enzyme or adapters by nonproduc-
tive binding events. Poly(A) enrichment based on magnets is the
gold-standard experimental approach, but any other strategies that
do not involve physical forces—such as vortexing, vigorous pipet-
ting, or column-based purification—would work as well.

The efficiency of library preparation solely depends on the
efficiency of DNA-RNA ligation procedures. A schematic workflow
of Nanopore Library preparation is provided in Fig. 4. Any con-
taminant that reduces ligation efficiency will impact the sequencing
performance of the library. It is thus important to follow the
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Fig. 4 Representation of ONT Direct-RNA library preparation protocol. The reverse transcription adaptor
containing a T-overhang is ligated to the full-length RNA (shown in grey). This adaptEr can only bind at the
3'-end of the transcript and initiates reverse transcription. The reverse transcription creates a DNA strand
(shown in orange). In this way, an RNA—cDNA duplex is formed. Next, a sequencing adaptor containing the
motor protein is ligated to the RNA—cDNA duplex along with dual tethers. During sequencing on a ONT MinION
sequencer, these tethers anchor the DNA strand to the lipid bilayer membrane, which helps to efficiently feed
the RNA strand through the pore

recommendations given in the Nanopore protocols (nanoporetech.
com) for RNA quality and quantity measures. The only exception
are ligation and bead purification incubation times, which we rou-
tinely double. A longer incubation time at room temperature might
increase the risk of RNA degradation, yet also increases the chance
of successful ligation or DNA binding or elution events to beads,
which leads to a more efficient library preparation. Finally, it is
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crucial to proceed quickly from the final ligation to actual sequenc-
ing and avoid harsh chemicals and temperatures with the final
library, as an active protein has been added whose function is
essential for sequencing. An example protocol for library prepara-
tion including total RNA extraction and poly(A) enrichment
together with notes arising from our library preparation experience
can be found at dx.doi.org,/10.17504 /protocols.io.9¢jh2un.

4 Bioinformatics Analysis

4.1 Requirements

4.1.1 Test Dataset

4.1.2 Hardware
Requirements

To accurately estimate the poly(A) tail length from Nanopore
native RNA sequencing data, we developed an R package—zazl-
findr [12]. Briefly, tailfindr estimates poly(A) tail length by first
locating the monotonous stretch of current signal corresponding to
the poly(A) tail within the raw signal, and then calculating its
duration in samples (see Fig. 5). Next, a read-specific translocation
rate is computed; it specifies the average of samples per nucleotide
translocation. After estimating this translocation rate, it is used to
normalize the tail length in samples found earlier to yield tail length
in nucleotides. During all these steps, tailfindr only needs base-
called FASTS5 files to estimate the poly(A) tail length, making it
independent of downstream data processing and thus implemen-
table in real-time data analysis pipelines. The following paragraphs
will give you detailed instructions on how to use tailfindr toward
obtaining isoform-specific poly(A) measurements from Nanopore
native RNA sequencing.

We extracted RNA from Zebrafish (Danio rerio) using the protocol
described above, and sequenced it on a MinION sequencer. A
subset of reads from this experiment can be downloaded from
tiny.cc/polya_rna_data. We will now demonstrate the various
steps involved in transcript isoform-specific poly(A) tail length
assessment using this example dataset, but you can use your own
dataset as well.

The example dataset can be processed on any laptop or desktop
computer running a UNIX-based operating system with at least
3GB of free disk space. For a large real-world dataset, it is recom-
mended that the pipeline is run on a Linux cluster, or a powerful
workstation. For accelerating the basecalling speed, GPUs can be
used. For more details on which GPUs are compatible with the
current basecaller, please refer to this link: https://community.
nanoporetech.com/posts/guppy-3-0-gpu-recommendati
(requires community login).
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Fig. 5 A simplified view of how tailfindr estimates poly(A) tail length. (a) Complete raw signal corresponding to
an RNA transcript translocating through the pore. The signal consists of a series of current samples measured
in picoAmperes (pA). (b) tailfindr first locates the monotonous signal corresponding to the poly(A) tail (high-
lighted in brown). In this example, the segment is 500 samples long. (¢) Next, failfindr estimates the read-
specific translocation rate, that is, the average number of samples generated per nucleotide in a given read.
(d) Poly(A) length is calculated by dividing the tail length in samples by the read-specific translocation rate

4.1.3  Software The following software should be installed on the analysis
Requirements computer:

e DPython 3 environment.

e R (version 3.5.3 or greater).

e Git.
4.2 Data Analysis There are various steps involved in going from raw reads produced
Pipeline by ONT sequencing to transcript isoform-specific poly(A) tail

length assignment, as shown in Fig. 6. We will now describe each
of these steps in detail.
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Fig. 6 Flowchart for poly(A) tail length estimation using Nanopore sequencing
and failfindr

4.2.1 Basecalling Nanopore sequencing produces raw FASTS5 files that record the
current signal through the pore as an RNA molecule translocates
through it (see Fig. 7a). The first step is to basecall this raw signal to
find the nucleotide sequence corresponding to the recorded cur-
rent. There are many basecallers that can do this; please refer to
[22] for a review on this topic. Some of the basecallers have been
developed by ONT, while others are developed by Nanopore users.
Albacore is a widely used basecaller developed by ONT. Guppy—a
recently released basecaller, also developed by ONT—has now
replaced Albacore because it has better basecalling performance
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Fig. 7 Structure of a FASTS file as displayed by HDFView software. (a) File structure of a raw FAST5 file
generated by MinKNOW. (b) The same file as in (a) after basecalling by Guppy. During basecalling a new
FASTS5 is generated that contains not only raw signal data, but also additional basecalling information. Notice
how additional levels of information (Analyses, Basecall_1D_000 etc.) have now been added in this
new file

and is faster than its predecessor. We recommend using the latest
version of Guppy which can be downloaded from the ONT Com-
munity website https: //community.nanoporetech.com/
downloads.

Basecalling a raw FASTS5 file using Guppy will add a Base-
call_1D_000 group to the FAST5 file hierarchy (see Fig. 7b).
This basecall group contains a Move table (Events table in case
of Albacore) which is used by zailfindr to compute the read-specific
translocation rate. The structure of a FAST5 file—raw or base-
called—can be easily explored by opening it in HDFView
(https: //www.hdfgroup.org/downloads/hdtview/).

Guppy has both CPU and GPU versions. If you have access to
an Nvidia GPU, then install and use the GPU version of Guppy, as
it is faster to basecall on GPUs compared to CPUs. Here, we will
demonstrate basecalling using the CPU version of Guppy (se¢ Note
2 on where to get the latest version of Guppy). Assuming that you
have a Quad Core processor (with two threads per processor; eight
threads in total) and 16GB of RAM, basecalling can be done by
executing the following on the command line:

guppy_basecaller \

--config rna_r9.4.1_70bps_hac.cfg \
--input_path \path\to\raw\reads\folder \
--recursive \

--save_path \path\to\save\basecalled\data\to \
--fast5_out \
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--trim_strategy none \
--num_callers 1 \
--cpu_threads_per_caller 8 \
2>&1 | tee logfile.txt

Parameter Descviption

--config specify the model configuration to be used during
basecalling. In this case, we have chosen the “high accuracy” (hac)
RNA model for pore version 9.4.1. The hac models yield more
accurate basecalls at the cost of basecalling speed.

Refer to:

¢ Note 3 for choosing a faster basecalling model.

¢ Note 4 for selecting an appropriate config file for your experi-
ment in case you are not sure.

e Note 5 if your data is from a legacy RNA Kkit.

--input_path specify the path of the folder containing raw
FASTS5 files produced by the ONT sequencing platform. When
using the example dataset, extract it first, and then specify the
path of the extracted directory here.

--recursive specifies that the input_path directory should
be recursively searched to discover all raw FASTS5 files within any
subfolders.

--save_path specify the path of the directory where base-
called files should be stored.

--fast5_out specifies that in addition to the FASTQ files, the
basecaller should also output FASTS5 files. Basecalled files contain-
ing FAST5 output is essential for zailfindr to calculate the read-
specific translocation rate for normalizing the poly(A) tail length.

--trim_strategy should be set to none so that the base-
caller does not trim off the adaptor sequence that was added to the
3" end of the poly(A) + RNA.

--num_callers specifies how many basecallers to use in
parallel.

--cpu_threads_per_caller specifies how many threads
should be used per basecaller. In general, num_callers * cpu_-
threads_per_caller should not exceed the total number of
threads available on the machine. Furthermore, there must be at
least 4GB + 1GB * num_callers RAM available. In our case, both
these criteria are satisfied for the machine that we are using. For
more exhaustive information on these settings, please refer to the
document “Guppy basecaller and Guppy basecaller server”
(https: //community.nanoporetech.com /protocols /Guppy-proto
col/v/gpb_2003_v1_revm_14dec2018 /guppy-basecaller-and-
guppy-basecaller-server) on the Nanopore Community.
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4.2.2  Quality Control
After Basecalling

B basecalled_data
[ fastq_file_1.fastq
[ fastq_file_2.fastq
O fastq_file_3.fastq
(O fastq_file_3.fastq
[ fastq_file_4.fastq

O sequencing_summary.txt
W workspace

o
O read_1.fast5
O read_2.fast5

O read_4000.fast5
w1
w2
w3

Fig. 8 Structure of the output directory produced by the Guppy basecaller. Each
FASTQ file in the output of the basecaller contains sequence and quality scores
for 4000 (default) reads. The sequencing_summary . txt file contains a
summary of useful basecalling information, which is used by tools such as
NanoPlot. The workspace folder contains numbered subfolders, each of
which contain 4000 basecalled FAST5 files, which are used by tools such as
tailfindr

2>&1 | tee logfile.txt specifies that the output, and any
errors produced by the command, should be saved in a text file in
addition to being displayed in the terminal. It is a good practice to
do this for troubleshooting in case of a computer crash, power
failure etc.

After successfully running the above, the basecalled FASTQ
and FASTS5 file can be found in the directory as specified in save_-
path. The structure of this directory is depicted in Fig. 8. Please
refer to Note 6 to find how the structure of this directory changes
when multi-fast5 files are basecalled.

Running quality control checks after basecalling is an optional but
recommended step as it can reveal important information about the
sequencing run such as the length of the reads (Fig. 9a), sequencing
performance over time (Fig. 9b), and the quality of the reads
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Fig. 9 A subset of figures generated by NanoPlot. (a) Read length histogram. This plot can be useful in
understanding if RNA degradation significantly affected the sample. This particular histogram was generated
for a sequencing run in which Zebrafish RNA was spiked with a synthetic GFP RNA construct of approx. 800 bp
in length. The spike in the histogram around 800 represents these GFP reads, and the background represents
the read length distribution for the Zebrafish transcriptome. (b) Basecall quality vs. time of sequencing. This
plot is useful in assessing if the sequencing chemistry—which might degrade over time—is having an
adverse effect on the quality of the reads. Ideally, the basecalling quality should not drop dramatically during
the sequencing run. (c) Read length vs. average read quality plot. It is useful in understanding how the read
quality varies over read length. In a good sequencing run, the read quality for the majority of the reads should
be around 814 for RNA (9—20 for DNA). Higher reads quality are good, and lower read qualities for majority of
reads might warrant revisiting the library preparation steps and figuring out what might have gone wrong

(Fig. 9¢). There are many tools to perform QC on Nanopore data,
but the ones that produce the most informative plots are NanoPlot
(https: //github.com /wdecoster /NanoPlot) and PycoQC
(https: //a-slide.github.io /pycoQC/) [23, 24].

Here, we will use NanoPlot to perform quality control checks
on the basecalled data. NanoPlot requires only the sequencing_-
summary.txt file produced by Guppy. To run NanoPlot, first
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4.2.3 |Installing
and Running Tailfindr

activate a Python 3 environment, and then run the following in the
command line:

NanoPlot \

--summary \path\to\seguencing_ summary.txt \
--outdir \output\path \

--loglength

Parameter Description

--summary, path of the summary file generated by Guppy.

--outdir, path of the directory where NanoPlot output
should be saved.

--loglength, specifies that the read lengths should scaled
logarithmically in the plots.

The output of NanoPlot is an HTML file that can be viewed in
any browser of your choice.

We are now ready to estimate poly(A) tail lengths in the basecalled
data using tailfindr. Please refer to its documentation (https://
github.com/adnaniazi/tailfindr) to learn how to install it. After
installing zaslfindr, poly(A) tail lengths can be estimated by using
the following commands in R:

library(tailfindr)

df <- find_tails(fast5_dir = ’'/path/to/basecalled_data’,
save_dir = ’/path/to/save/folder/’,

csv_filename = ’‘rna_tails.csv’,

num_cores = 2)

taslfindr discovers all FASTS5 files recursively within the fas-
t5_dir. The resulting CSV file—as specified in the csv_file-
name parameter—is saved in the save_dir. num_cores specifies
the number of physical cores on the machine to be used when
running tailfindr.

Please refer to:

e Note 7 if you are running tailfindr on MinKNOW Live-
basecalled data.

e Note 8 if you want to generate plots highlighting the poly
(A) tail region in the raw current data.

e Note 9 on how to use tailfindr for estimating poly(A)/
(T) length in ¢cDNA data.

The output of tailfindr is CSV file contain six columns as
described in Table 1.
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Table 1

Description of columns in the CSV output of tailfindr

Column
Column name type Description
read_id Character Read ID as given in the FASTS5 file
tail_start Numeric  Sample index of start site of the tail in raw data
tail_end Numeric  Sample index of end site of the tail in raw data

samples_per_nt

tail_length

file_path

Numeric

Numeric

Read-specific translocation rate in terms of samples per nucleotide

Tail length in nucleotides. It is the difference between tail_end and tail_start
divided by samples_per_nt

Character Absolute path of the FASTS file

4.2.4  Concatenate
FASTQ Files

Now that we have the poly(A) tail length for each read in the
CSV file, it is possible to perform quality control checks of this data.
For example, a distribution of poly(A) tail lengths can be plotted to
see ifit aligns with the expected distribution of poly(A) tail lengths.
Furthermore, a distribution of the translocation rate sample-
s_per_nt can also be plotted. Ideally, this distribution should be
unimodal with no skew (see Note 9).

During the basecalling step, Guppy produced both FASTQ and
FASTS5 files. By default, each FASTQ file contains sequences of
4000 reads (see Fig. 8). Downstream processing software, such as
the mapper Minimap2 [25], require only a single FASTQ file as
input. Therefore, all FASTQ files produced by Guppy should be
concatenated. Execute the following script in command line to
combine all FASTQ file into one:

BASECALLED_DATA_PATH=/directory/containing/basecalled/data
OUTPUT_PATH=/directory/where/concatenated/fastqg/is/to/stored
# Do not edit the code below this line

cd $BASECALLED_DATA_PATH

find ${BASECALLED_DATA_PATH} -name '*.fastq’ | cat > ${OUT-
PUT_PATH}/filenames.txt

{ xargs cat < S${OUTPUT_PATH}/filenames.txt ; } > S${OUTPUT_-
PATH}/all_reads. fq

The above shell script searches BASECALLED _DATA_PATH
directory for all files with .fastq extension and produces
the following two files in the ouTpPuT_PATH directory:

1. filenames.txt file that contains the names of all FASTQ
files that were found in BASECALLED_DATA_PATH directory,
and will be concatenated.

149



150

4.2.5 Alignment of Data
to Transcriptome

4.2.6 Annotating Tailfindr
Output with Transcript IDs

2. all_reads.fq file that contains the concatenated FASTQ
sequences from all the FASTQ files recorded in the file-
names.txt file.

Although we have estimated poly(A) tail lengths for all reads, we
still do not know which transcript each of these reads originated
from. To find the transcript identities, the reads must be mapped to
the transcriptome of the organism from which the RNA was
extracted (please refer to Note 10 if no reliable transcriptome is
present and data should be mapped to a reference genome). The
alignment information can then be merged with taslfindr output to
associate the poly(A) tail length estimations to their respective
transcript IDs.

To map the data to the transcriptome, we will use Minimap2
(https://github.com/lh3 /minimap2) [25]. Minimap2 needs a sin-
gle FASTQ file containing all the reads to be aligned. Run the
following command in command line to invoke Minimap2:

minimap2 \
-ax map-ont \
/path/to/reference.fa \
/path/to/all_reads.fqg > /path/to/alignments.sam
2>&l | tee logfile.txt

Parameter Description

Here is a description of the parameters used in the above
command:

-a specifies that CIGAR string and output alignments should
be produced in the SAM format.

-x use predefined settings for mapping. As each of these
sequencing technologies differ in their insertion, deletion and
error rates, there are a number of presets available in Minimap2 to
choose from; map-ont is one of them. It specifies that Minimap2
should use alignment parameters fine-tuned for ONT sequencing
data. This is because Minimap2 can align reads from Illumina,
PacBio, and ONT sequencing.

Now that we have the poly(A) tail length estimates from tailfindrin
a CSV file, and the alignment information in a SAM file, we are
ready to merge them together. This will annotate each read with its
corresponding transcript ID. To do this, invoke zaslfindr’s built-in
convenience function annotate_tail() in R:

df_annotate <-
annotate_tails(
sam_file = "/path/to/sam/file.sam",

tails_csv_file = "/path/to/tails.csv",
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Table 2

Description of columns added to the tailfindr CSV output by merging SAM information

Column name Column type Description

transcript_id Character Transcript ID from the transcriptome
mapping_quality Numeric Mapping quality of the transcript
sam_flag Numeric SAM flag

4.2.7 What Next?

This command will add three more columns to the input CSV
file as described in Table 2.

We now have the tail length and the corresponding transcript
IDs in the annotated_tails.csv file. Thus we have successfully
annotated each read with a transcript-isoform ID and a
corresponding poly(A) tail length.

Now that we have transcript-specific poly(A) tail lengths, we can do
a number of things. For example, we can plot the distribution of
poly(A) tail length of our dataset. We can also annotate the poly
(A) tail length of a transcript with additional features such as gene
name, gene length and its function. These steps are beyond the
scope of this chapter, however, the reader should note that they can
be easily done within R using the ZiomaRt Bioconductor package
[26]. With gene name annotations, we can for instance generate a
scatter plot of poly(A) tail length vs. gene length to see if there is
any interesting relationship between the two. Additionally it is
possible to plot poly(A) tail distributions from transcript isoforms
of the same genes. Many further possibilities for data analysis exist,
and implementation depends on the particular research question.
The here described tailfindr-based pipeline provides the first step
towards exploring these possibilities enabling the study of isoform-
specific poly(A) tail-dependent regulation.

5 Gonclusion

We have here demonstrated how long-read ONT native RNA
sequencing in combination with zadlfindr can be used for
transcriptome-wide isoform-specific poly(A) tail profiling. This
method simplifies isoform-specific poly(A) tail measurements and
avoids common caveats from short-read based sequencing
approaches, namely (1) the possible introduction of amplification
artefacts, (2) transcript isoform quantification based on statistical
analysis of short reads spanning exon borders, and (3) elaborate and
time-consuming sequencing sample preparation.
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The portability and low investments for ONT sequencers, cou-

pled with its ability to basecall and analyze sequencing data in real-
time, enables anyone to sequence anything, anywhere. Addition-
ally, the ability of direct RNA sequencing to detect any epigenetic
modification in native RNA alleviates the need for separate assays
for detecting each RNA modification. This enables future studies—
both in the field and in a laboratory settings—to assay poly(A) tail
length and RNA modifications in a single experiment. Such a
transcriptome-wide holistic approach would provide a valuable
insight in understanding RNA biology—one long molecule at
a time.

6 Notes

1. Reverse-transcribing RNA into an RNA-cDNA duplex is an
optional but recommended step. Without performing this
step, the throughput will be about 30% lower and basecalling
quality scores will also be slightly lower. Most likely this is
caused by secondary RNA structure affecting pore transloca-
tion, making current signal more variable. Additionally, RNA
degradation causes the average read length to be shorter. We
recommend that you perform this step unless you have a very
good reason not to.

2. We demonstrated how to basecall reads using the latest base-

caller at the time of this writing provided by ONT—Guppy
v3.2.4. However, it should be noted that the basecalling tech-
nology is constantly evolving. Always check ONT’s Software
Download section (https://community.nanoporetech.com/
downloads) to read about the latest version of the basecaller
and how to use it, as these might significantly increase base-
calling accuracy and thus transcript isoform assignment.

3. If basecalling speed is more important than basecalling accu-

racy, then wuse the fast model configuration filer-
na_r9.4.1_70bps_fast.cfqg.

At the time of this writing, the fast models are approxi-
mately 5-8 times faster than the high accuracy model. Table 3
shows a comparison between raw read accuracy of fast and high
accuracy models.

4. If your experiment uses a pore version other than 9.4.1, then

ensure that you specify a configuration file that matches the
version of the pore used. You can find a list of all available
configuration files for every flow cell and sequencing kit by
executing the following command:
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Table 3

A comparison of raw read accuracies between fast and high-accuracy basecalling models

Sample type Model name Raw read accuracy

DNA Fast basecalling 92.1%
High-accuracy basecalling 95.0%

RNA Fast Basecalling 88.6%
High-accuracy basecalling 93.9%

guppy_basecaller --print_workflows

If you are still unsure as to which configuration file to use,
then, instead of specifying the configuration file, you can also
let Guppy choose the appropriate configuration file for you. In
this case, however, you have to specify the flowcell and kit
arguments. Assuming if the flow cell and kit used in the experi-
ment are FLO-MIN106 and SQK-RNAOO1, respectively, then
use the following command in command line to invoke Guppy:

guppy_basecaller \
--flowcell FLO-MIN106 \
--kit SQK-RNAQOOL \

--input_path \path\to\raw\reads\folder \

--recursive \

--save_path \path\to\save\basecalled\data\to \

--fast5_out \

--trim_strategy none \

--num_callers 1 \

--cpu_threads_per_caller 8 \

2>&1 | tee logfile.txt

5. The use of tailfindris compatible with any RNA kit—including

legacy kits—as all of these kits sequence both the transcript and
the poly(A) tail. Thus, you can use tailfindr to find poly(A) tail
lengths on any older RNA dataset where the initial aim of the
study was something entirely different. For tailfindr to work,
the only requirement is the availability of FAST5 files—either
raw or basecalled; tailfindr cannot be used if the only file
remaining from past experiments are FASTQ files. We recom-
mend that you always re-basecall the old previously basecalled
FASTS files before using tailfindr on it, and specify an appro-
priate value for basecall_group parameter when invoking

tailfindy.
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6. If the raw FASTS files produced by MinKNOW have only one
read per FASTS5 file, then reads within the workspace folder are
arranged in numbered subfolders such that each folder con-
tains 4000 FASTS5 reads, as depicted in Fig. 8. However, if the
raw FASTS5 files, produced by the sequencer, have multiple
reads per FASTS5 file, then there are no subfolders within work-
space folder, and each basecalled FAST5 file in workspace
folder will contain multiple reads (default is 4000) inside them.

7. MinKNOW—the data acquisition software used during
sequencing on ONT sequencers—can basecall while the raw
data is being acquired. This feature is called “MinKNOW Live
Basecalling.” Currently, tailfindr does not support MinKNOW
live basecalled data because these FAST5 files do not contain
Event/Move table (see Fig. 10a). The Event/Move table is
required by zailfindr to compute a read-specific translocation
rate in order to normalize the poly(A) tail length in samples to
yield poly(A) tail length in nucleotides.

To circumvent this problem, please basecall MinKNOW
live-basecalled data again using standalone Guppy or Albacore.
This will add an additional Basecall group (Base-
call_1D_001) in the file structure of the FAST5 file (see
Fig. 10b). When using tailfindr on these re-basecalled reads,
you must correctly specify the Basecall group containing the
Event/Move table. For example, the read shown in Fig. 10, the
Event/Move table in the re-basecalled file is in the Base-
call_1D_001 in the FASTS5 file structure hierarchy. Tailfindr,
in the case, should be invoked in R as shown below:

df <- find_tails(fast5_dir = ’'/path/to/basecalled_data’,
save_dir = ’/path/to/save/folder/’,

basecall_group = ’Basecall_1D_001",

csv_filename = ‘rna_tails.csv’,

num_cores = 2)

The default value of basecall_group is Basecall_1D_000,
which in the command above, has been changed to
Basecall_1D_001.

8. tailfindr allows you to generate plots that show the tail location
in the raw squiggle (see Fig. 11). You can save these plots as
interactive .html files by using ’rbokeh’ as the plottin-
g_library. You can then interactively zoom in on the tail
region in the raw squiggle and see the exact location of the tail.
To generate these plots, execute the following command in R:
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(a) (b)
¥ [B]read_1 fasts v [Blread_1.fasts
v @ Analyses v @ Analyses
v iBasecallJ D_000 ViBasecall_1D_000
v @BaseCalled_template v @ BaseCalled_template
ElFastq Fastq
» €4 Summary » CASummary
>E,,|Segmentation_000 'ﬁBasecall 1D 001
QPreviousReadinfo v @ BaseCalled_template
» C)Raw
» C) UnigueGlobalKey

> A Summary
» () Segmentation_000
» () Segmentation_001
CaPreviousReadinfo
> C)Raw
> C)UniqueGlobalKey

Fig. 10 Hierarchy of contents within basecalled FAST5 files as viewed through the HDFView software. (@)
Contents of a MinKNOW live Basecalled read. Notice that under the Basecall_1D_000 group, there is no Move
table, which is required by failfindr to find the read-specific translocation rate (b) Contents of the read shown
in (a) after it has been basecalled again using standalone Guppy. Notice the addition of Basecall_1D_001
group in the FAST5 file hierarchy, which now contains Move table. Tailfindr should now be invoked with
basecall_group parameter set to ‘Basecall_1D_001’ to ensure that it can find the Move table

Poly(A) tail | Tail length [nt]: 61.65 | Tail start: 9063 | Tail end: 10788 | Tail duration [Sa): 1725 | Samples per nt: 27.98

Raw data

00
700 s Poly(A) tail

PA

Moves

NI VAU ) A 1 A

X

Sample index

Fig. 11 A plot generated by failfindr. The poly(A) tail is highlighted in red in the current trace. Each spike in the
bottom panel shows the locations in the current trace where the basecaller has detected a nucleotide
transition. Notice how the poly(A) tail region is devoid of any base transition. This is because the basecaller
cannot distinguish when one adenosine base in the poly(A) tail ended and the next one started. It can detect a
nucleotide transition only if a more diverse sequence is encountered

df <- find_tails(fast5_dir = ’/path/to/basecalled_data’,
save_dir = ’'/path/to/save/folder/’,

csv_filename = ’‘rna_tails.csv’,

save_plots = TRUE,

plotting_library = ’‘rbokeh’,

num_cores = 2)

155



156

10.

Generating plots can slow down the performance of zail-
findr. We recommend that you generate these plots only for a
small subset of your reads.

. Although we have demonstrated how to perform poly(A) tail

profiling using Nanopore sequencing of native RNA, it is also
possible to perform poly(A)/(T) profiling using complemen-
tary DNA (cDNA) sequencing data produced by Nanopore
sequencing. Sequencing cDNA instead of RNA has many
advantages:

(a) cDNA is more stable compared to RNA which can
degrade quickly if not handled very carefully at every
step of library preparation protocol,

(b) cDNA sequencing requires less starting material com-
pared to RNA sequencing,

(c) cDNA sequencing on Nanopore devices produces ten
times more data per flowcell compared to RNA sequenc-
ing because of the faster motor protein, and,

(d) poly(A) tail length estimates in DNA are more robust
compared to RNA because the motor protein used in
DNA sequencing ratchets the DNA at a more controlled
speed compared to the motor protein used in RNA
sequencing (see Fig. 12).

For more information on poly(A)/(T) profiling in cDNA,
please refer to the zailfindr paper [12] and documentation on
GitHub.

Reads from RNA sequencing can be mapped either to a refer-
ence transcriptome, or to a genome. The latter is more cum-
bersome but could yield the identification of new transcript

cDNA RNA
2
‘@
c
o}
(=]
I [ 1 1 i
0 10 20 30 40 50

Translocation rate estimate (samples/nucleotide)

Fig. 12 Comparison of cDNA and RNA translocation rate estimates. RNA trans-
locates at a slower speed compared to DNA. Furthermore, the spread in RNA
translocation rate is greater than that of cDNA. This in turn translates to more
spread in RNA poly(A) tail lengths compared to cDNA poly(A)/(T) tail lengths
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isoforms. This is especially useful if the reference transcriptome
is known to be erroneous and is being assessed for the first time
by long-read sequencing. For aligning reads to a genome with
Minimap2, use the following command:
minimap2 \
-ax splice -uf -k14 \
/path/to/reference_genome.fa \
/path/to/all_reads.fq > /path/to/alignments.sam
2>&1 | tee logfile.txt
Pavameter Description
Here is a description of additional parameters in the above
command:
-splice Specifies that spliced alignment should be done.
-uf By default, spliced alignment assumes the read orientation
relative to the transcript strand is unknown and therefore it tries
two rounds of alignment to infer the read orientation. This flag
forces Minimap2 to consider only the forward transcript strand
during mapping.
-k14 For noisy Nanopore Direct RNA-seq reads, it is recom-
mended to use a smaller k-mer size for increased sensitivity to the
first or the last exons. Default value of k-mer size is 15.
Acknowledgments
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